Estimating scene flow using an interconnected patch surface model with belief-propagation inference super()

This article presents a novel method for estimating the dense three-dimensional motion of a scene from multiple cameras. Our method employs an interconnected patch model of the scene surfaces. The interconnected nature of the model means that we can incorporate prior knowledge about neighbouring sce...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer vision and image understanding 2014-04, Vol.121, p.74-85
Hauptverfasser: Popham, Thomas, Bhalerao, Abhir, Wilson, Roland
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 85
container_issue
container_start_page 74
container_title Computer vision and image understanding
container_volume 121
creator Popham, Thomas
Bhalerao, Abhir
Wilson, Roland
description This article presents a novel method for estimating the dense three-dimensional motion of a scene from multiple cameras. Our method employs an interconnected patch model of the scene surfaces. The interconnected nature of the model means that we can incorporate prior knowledge about neighbouring scene motions through the use of a Markov Random Field, whilst the patch-based nature of the model allows the use of efficient techniques for estimating the local motion at each patch. An important aspect of our work is that the method takes account of the fact that local surface texture strongly dictates the accuracy of the motion that can be estimated at each patch. Even with simple squared-error cost functions, it produces results that are either equivalent to or better than results from a method based upon a state-of-the-art optical flow technique, which uses well-developed robust cost functions and energy minimisation techniques.
doi_str_mv 10.1016/j.cviu.2014.01.001
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1531028170</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1531028170</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_15310281703</originalsourceid><addsrcrecordid>eNqVjkFOwzAQRb0AqQV6AVazLIu6M0kgsEZFHIB9Zdxx6-LYwWPT65NIXIDVl57--_pK3RNqQnranrX98VU3SJ1G0oh0pZaEfb9pqWsW6kbkPEHqXmipvnZS_GCKj0cQy5HBhXSBKjMwEXwsnG2KkW3hA4ym2BNIzc5YhiEdOMDFlxN8cvDsNmNOozlOc2lWHWeOU0_qyHn9cKeunQnCq7-8Veu33cfr-2x9V5ayH_z0IQQTOVXZ02NL2DxTj-0_qr9MLFMj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1531028170</pqid></control><display><type>article</type><title>Estimating scene flow using an interconnected patch surface model with belief-propagation inference super()</title><source>Elsevier ScienceDirect Journals</source><creator>Popham, Thomas ; Bhalerao, Abhir ; Wilson, Roland</creator><creatorcontrib>Popham, Thomas ; Bhalerao, Abhir ; Wilson, Roland</creatorcontrib><description>This article presents a novel method for estimating the dense three-dimensional motion of a scene from multiple cameras. Our method employs an interconnected patch model of the scene surfaces. The interconnected nature of the model means that we can incorporate prior knowledge about neighbouring scene motions through the use of a Markov Random Field, whilst the patch-based nature of the model allows the use of efficient techniques for estimating the local motion at each patch. An important aspect of our work is that the method takes account of the fact that local surface texture strongly dictates the accuracy of the motion that can be estimated at each patch. Even with simple squared-error cost functions, it produces results that are either equivalent to or better than results from a method based upon a state-of-the-art optical flow technique, which uses well-developed robust cost functions and energy minimisation techniques.</description><identifier>ISSN: 1077-3142</identifier><identifier>DOI: 10.1016/j.cviu.2014.01.001</identifier><language>eng</language><subject>Cameras ; Cost function ; Energy use ; Equivalence ; Estimating ; Neighbouring ; Surface layer ; Texture</subject><ispartof>Computer vision and image understanding, 2014-04, Vol.121, p.74-85</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Popham, Thomas</creatorcontrib><creatorcontrib>Bhalerao, Abhir</creatorcontrib><creatorcontrib>Wilson, Roland</creatorcontrib><title>Estimating scene flow using an interconnected patch surface model with belief-propagation inference super()</title><title>Computer vision and image understanding</title><description>This article presents a novel method for estimating the dense three-dimensional motion of a scene from multiple cameras. Our method employs an interconnected patch model of the scene surfaces. The interconnected nature of the model means that we can incorporate prior knowledge about neighbouring scene motions through the use of a Markov Random Field, whilst the patch-based nature of the model allows the use of efficient techniques for estimating the local motion at each patch. An important aspect of our work is that the method takes account of the fact that local surface texture strongly dictates the accuracy of the motion that can be estimated at each patch. Even with simple squared-error cost functions, it produces results that are either equivalent to or better than results from a method based upon a state-of-the-art optical flow technique, which uses well-developed robust cost functions and energy minimisation techniques.</description><subject>Cameras</subject><subject>Cost function</subject><subject>Energy use</subject><subject>Equivalence</subject><subject>Estimating</subject><subject>Neighbouring</subject><subject>Surface layer</subject><subject>Texture</subject><issn>1077-3142</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqVjkFOwzAQRb0AqQV6AVazLIu6M0kgsEZFHIB9Zdxx6-LYwWPT65NIXIDVl57--_pK3RNqQnranrX98VU3SJ1G0oh0pZaEfb9pqWsW6kbkPEHqXmipvnZS_GCKj0cQy5HBhXSBKjMwEXwsnG2KkW3hA4ym2BNIzc5YhiEdOMDFlxN8cvDsNmNOozlOc2lWHWeOU0_qyHn9cKeunQnCq7-8Veu33cfr-2x9V5ayH_z0IQQTOVXZ02NL2DxTj-0_qr9MLFMj</recordid><startdate>20140401</startdate><enddate>20140401</enddate><creator>Popham, Thomas</creator><creator>Bhalerao, Abhir</creator><creator>Wilson, Roland</creator><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140401</creationdate><title>Estimating scene flow using an interconnected patch surface model with belief-propagation inference super()</title><author>Popham, Thomas ; Bhalerao, Abhir ; Wilson, Roland</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_15310281703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Cameras</topic><topic>Cost function</topic><topic>Energy use</topic><topic>Equivalence</topic><topic>Estimating</topic><topic>Neighbouring</topic><topic>Surface layer</topic><topic>Texture</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Popham, Thomas</creatorcontrib><creatorcontrib>Bhalerao, Abhir</creatorcontrib><creatorcontrib>Wilson, Roland</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer vision and image understanding</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Popham, Thomas</au><au>Bhalerao, Abhir</au><au>Wilson, Roland</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimating scene flow using an interconnected patch surface model with belief-propagation inference super()</atitle><jtitle>Computer vision and image understanding</jtitle><date>2014-04-01</date><risdate>2014</risdate><volume>121</volume><spage>74</spage><epage>85</epage><pages>74-85</pages><issn>1077-3142</issn><abstract>This article presents a novel method for estimating the dense three-dimensional motion of a scene from multiple cameras. Our method employs an interconnected patch model of the scene surfaces. The interconnected nature of the model means that we can incorporate prior knowledge about neighbouring scene motions through the use of a Markov Random Field, whilst the patch-based nature of the model allows the use of efficient techniques for estimating the local motion at each patch. An important aspect of our work is that the method takes account of the fact that local surface texture strongly dictates the accuracy of the motion that can be estimated at each patch. Even with simple squared-error cost functions, it produces results that are either equivalent to or better than results from a method based upon a state-of-the-art optical flow technique, which uses well-developed robust cost functions and energy minimisation techniques.</abstract><doi>10.1016/j.cviu.2014.01.001</doi></addata></record>
fulltext fulltext
identifier ISSN: 1077-3142
ispartof Computer vision and image understanding, 2014-04, Vol.121, p.74-85
issn 1077-3142
language eng
recordid cdi_proquest_miscellaneous_1531028170
source Elsevier ScienceDirect Journals
subjects Cameras
Cost function
Energy use
Equivalence
Estimating
Neighbouring
Surface layer
Texture
title Estimating scene flow using an interconnected patch surface model with belief-propagation inference super()
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T13%3A49%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimating%20scene%20flow%20using%20an%20interconnected%20patch%20surface%20model%20with%20belief-propagation%20inference%20super()&rft.jtitle=Computer%20vision%20and%20image%20understanding&rft.au=Popham,%20Thomas&rft.date=2014-04-01&rft.volume=121&rft.spage=74&rft.epage=85&rft.pages=74-85&rft.issn=1077-3142&rft_id=info:doi/10.1016/j.cviu.2014.01.001&rft_dat=%3Cproquest%3E1531028170%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1531028170&rft_id=info:pmid/&rfr_iscdi=true