Experimental investigation of a liquid cooled high temperature proton exchange membrane (HT-PEM) fuel cell coupled to a sodium alanate tank

In high temperature proton exchange membrane (HT-PEM) fuel cells, waste heat at approximately 160 °C is produced, which can be used for thermal integration of solid state hydrogen storage systems. In the present study, an HT-PEM fuel cell stack (400 W) with direct liquid cooling is characterized and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of hydrogen energy 2014-04, Vol.39 (11), p.5931-5941
Hauptverfasser: Weiss-Ungethüm, Jörg, Bürger, Inga, Schmidt, Niko, Linder, Marc, Kallo, Josef
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5941
container_issue 11
container_start_page 5931
container_title International journal of hydrogen energy
container_volume 39
creator Weiss-Ungethüm, Jörg
Bürger, Inga
Schmidt, Niko
Linder, Marc
Kallo, Josef
description In high temperature proton exchange membrane (HT-PEM) fuel cells, waste heat at approximately 160 °C is produced, which can be used for thermal integration of solid state hydrogen storage systems. In the present study, an HT-PEM fuel cell stack (400 W) with direct liquid cooling is characterized and coupled to a separately characterized sodium alanate storage tank (300 g material). The coupled system is studied in steady state for 20 min operation and all relevant heat flows are determined. Even though heat losses at that specific power and temperature level cannot be completely avoided, it is demonstrated that the amount of heat transferred from the fuel cell stack to the cooling liquid circuit is sufficient to desorb the necessary amount of hydrogen from the storage tank. Furthermore, it is shown that the reaction rate of the sodium alanate at 160 °C and 1.7 bar is adequate to provide the hydrogen to the fuel cell stack. Based on these experimental investigations, a set of recommendations is given for the future design and layout of similar coupled systems. •Experimental results of direct coupling an HT-PEM fuel cell with sodium alanate tank.•Characterization of direct liquid cooled HT-PEM fuel cell.•Characterization of 300 g sodium alanate tank for coupling with fuel cell.•Recommendations for coupled systems.
doi_str_mv 10.1016/j.ijhydene.2014.01.127
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1531024344</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360319914002079</els_id><sourcerecordid>1531024344</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-7b624da841d7d3e22677aebea9cf829204b79fdcc06cb0afca78eb8935c314e63</originalsourceid><addsrcrecordid>eNqFkMtu1DAUhi0EEkPhFZA3SGWR4FvjZAeqBlqpCBZlbZ3YJzMeEnsaO1X7DLw0jqZ0y8be_LfzEfKes5oz3nw61P6wf3QYsBaMq5rxmgv9gmx4q7tKqla_JBsmG1ZJ3nWvyZuUDoxxzVS3IX-2D0ec_YQhw0h9uMeU_Q6yj4HGgQId_d3iHbUxjujo3u_2NONUPJCXGelxjrlI8cHuIeyQTjj1MwSk51e31c_t9490WHCkFsfyxOW4huRYclN0fpkojBAgI80Qfr8lrwYYE757-s_Ir6_b28ur6ubHt-vLLzeVVVzkSveNUA5axZ12EoVotAbsETo7tKITTPW6G5y1rLE9g8GCbrFvO3lhJVfYyDNyfsot4--WcrCZfFoXlt1xSYZfSM6EkkoVaXOS2jmmNONgjgUWzI-GM7PSNwfzj75Z6RvGTaFfjB-eOiBZGIfCxPr07BatUryRa8Hnkw7LwfceZ5Osx2DR-RltNi76_1X9BV4QoOo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1531024344</pqid></control><display><type>article</type><title>Experimental investigation of a liquid cooled high temperature proton exchange membrane (HT-PEM) fuel cell coupled to a sodium alanate tank</title><source>Access via ScienceDirect (Elsevier)</source><creator>Weiss-Ungethüm, Jörg ; Bürger, Inga ; Schmidt, Niko ; Linder, Marc ; Kallo, Josef</creator><creatorcontrib>Weiss-Ungethüm, Jörg ; Bürger, Inga ; Schmidt, Niko ; Linder, Marc ; Kallo, Josef</creatorcontrib><description>In high temperature proton exchange membrane (HT-PEM) fuel cells, waste heat at approximately 160 °C is produced, which can be used for thermal integration of solid state hydrogen storage systems. In the present study, an HT-PEM fuel cell stack (400 W) with direct liquid cooling is characterized and coupled to a separately characterized sodium alanate storage tank (300 g material). The coupled system is studied in steady state for 20 min operation and all relevant heat flows are determined. Even though heat losses at that specific power and temperature level cannot be completely avoided, it is demonstrated that the amount of heat transferred from the fuel cell stack to the cooling liquid circuit is sufficient to desorb the necessary amount of hydrogen from the storage tank. Furthermore, it is shown that the reaction rate of the sodium alanate at 160 °C and 1.7 bar is adequate to provide the hydrogen to the fuel cell stack. Based on these experimental investigations, a set of recommendations is given for the future design and layout of similar coupled systems. •Experimental results of direct coupling an HT-PEM fuel cell with sodium alanate tank.•Characterization of direct liquid cooled HT-PEM fuel cell.•Characterization of 300 g sodium alanate tank for coupling with fuel cell.•Recommendations for coupled systems.</description><identifier>ISSN: 0360-3199</identifier><identifier>EISSN: 1879-3487</identifier><identifier>DOI: 10.1016/j.ijhydene.2014.01.127</identifier><identifier>CODEN: IJHEDX</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Alternative fuels. Production and utilization ; Applied sciences ; Coupling ; Energy ; Exact sciences and technology ; Fuel cells ; Fuels ; Heat utilization ; HT-PEM (liquid cooled) ; Hydrogen ; Hydrogen storage ; Liquids ; PBI-membrane ; Proton exchange membrane fuel cells ; Sodium ; Sodium alanate ; Stacks ; Storage tanks ; Tanks</subject><ispartof>International journal of hydrogen energy, 2014-04, Vol.39 (11), p.5931-5941</ispartof><rights>2014 Hydrogen Energy Publications, LLC.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-7b624da841d7d3e22677aebea9cf829204b79fdcc06cb0afca78eb8935c314e63</citedby><cites>FETCH-LOGICAL-c412t-7b624da841d7d3e22677aebea9cf829204b79fdcc06cb0afca78eb8935c314e63</cites><orcidid>0000-0002-6091-0431</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijhydene.2014.01.127$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28441634$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Weiss-Ungethüm, Jörg</creatorcontrib><creatorcontrib>Bürger, Inga</creatorcontrib><creatorcontrib>Schmidt, Niko</creatorcontrib><creatorcontrib>Linder, Marc</creatorcontrib><creatorcontrib>Kallo, Josef</creatorcontrib><title>Experimental investigation of a liquid cooled high temperature proton exchange membrane (HT-PEM) fuel cell coupled to a sodium alanate tank</title><title>International journal of hydrogen energy</title><description>In high temperature proton exchange membrane (HT-PEM) fuel cells, waste heat at approximately 160 °C is produced, which can be used for thermal integration of solid state hydrogen storage systems. In the present study, an HT-PEM fuel cell stack (400 W) with direct liquid cooling is characterized and coupled to a separately characterized sodium alanate storage tank (300 g material). The coupled system is studied in steady state for 20 min operation and all relevant heat flows are determined. Even though heat losses at that specific power and temperature level cannot be completely avoided, it is demonstrated that the amount of heat transferred from the fuel cell stack to the cooling liquid circuit is sufficient to desorb the necessary amount of hydrogen from the storage tank. Furthermore, it is shown that the reaction rate of the sodium alanate at 160 °C and 1.7 bar is adequate to provide the hydrogen to the fuel cell stack. Based on these experimental investigations, a set of recommendations is given for the future design and layout of similar coupled systems. •Experimental results of direct coupling an HT-PEM fuel cell with sodium alanate tank.•Characterization of direct liquid cooled HT-PEM fuel cell.•Characterization of 300 g sodium alanate tank for coupling with fuel cell.•Recommendations for coupled systems.</description><subject>Alternative fuels. Production and utilization</subject><subject>Applied sciences</subject><subject>Coupling</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Fuel cells</subject><subject>Fuels</subject><subject>Heat utilization</subject><subject>HT-PEM (liquid cooled)</subject><subject>Hydrogen</subject><subject>Hydrogen storage</subject><subject>Liquids</subject><subject>PBI-membrane</subject><subject>Proton exchange membrane fuel cells</subject><subject>Sodium</subject><subject>Sodium alanate</subject><subject>Stacks</subject><subject>Storage tanks</subject><subject>Tanks</subject><issn>0360-3199</issn><issn>1879-3487</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkMtu1DAUhi0EEkPhFZA3SGWR4FvjZAeqBlqpCBZlbZ3YJzMeEnsaO1X7DLw0jqZ0y8be_LfzEfKes5oz3nw61P6wf3QYsBaMq5rxmgv9gmx4q7tKqla_JBsmG1ZJ3nWvyZuUDoxxzVS3IX-2D0ec_YQhw0h9uMeU_Q6yj4HGgQId_d3iHbUxjujo3u_2NONUPJCXGelxjrlI8cHuIeyQTjj1MwSk51e31c_t9490WHCkFsfyxOW4huRYclN0fpkojBAgI80Qfr8lrwYYE757-s_Ir6_b28ur6ubHt-vLLzeVVVzkSveNUA5axZ12EoVotAbsETo7tKITTPW6G5y1rLE9g8GCbrFvO3lhJVfYyDNyfsot4--WcrCZfFoXlt1xSYZfSM6EkkoVaXOS2jmmNONgjgUWzI-GM7PSNwfzj75Z6RvGTaFfjB-eOiBZGIfCxPr07BatUryRa8Hnkw7LwfceZ5Osx2DR-RltNi76_1X9BV4QoOo</recordid><startdate>20140404</startdate><enddate>20140404</enddate><creator>Weiss-Ungethüm, Jörg</creator><creator>Bürger, Inga</creator><creator>Schmidt, Niko</creator><creator>Linder, Marc</creator><creator>Kallo, Josef</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6091-0431</orcidid></search><sort><creationdate>20140404</creationdate><title>Experimental investigation of a liquid cooled high temperature proton exchange membrane (HT-PEM) fuel cell coupled to a sodium alanate tank</title><author>Weiss-Ungethüm, Jörg ; Bürger, Inga ; Schmidt, Niko ; Linder, Marc ; Kallo, Josef</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-7b624da841d7d3e22677aebea9cf829204b79fdcc06cb0afca78eb8935c314e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Alternative fuels. Production and utilization</topic><topic>Applied sciences</topic><topic>Coupling</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Fuel cells</topic><topic>Fuels</topic><topic>Heat utilization</topic><topic>HT-PEM (liquid cooled)</topic><topic>Hydrogen</topic><topic>Hydrogen storage</topic><topic>Liquids</topic><topic>PBI-membrane</topic><topic>Proton exchange membrane fuel cells</topic><topic>Sodium</topic><topic>Sodium alanate</topic><topic>Stacks</topic><topic>Storage tanks</topic><topic>Tanks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weiss-Ungethüm, Jörg</creatorcontrib><creatorcontrib>Bürger, Inga</creatorcontrib><creatorcontrib>Schmidt, Niko</creatorcontrib><creatorcontrib>Linder, Marc</creatorcontrib><creatorcontrib>Kallo, Josef</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of hydrogen energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weiss-Ungethüm, Jörg</au><au>Bürger, Inga</au><au>Schmidt, Niko</au><au>Linder, Marc</au><au>Kallo, Josef</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental investigation of a liquid cooled high temperature proton exchange membrane (HT-PEM) fuel cell coupled to a sodium alanate tank</atitle><jtitle>International journal of hydrogen energy</jtitle><date>2014-04-04</date><risdate>2014</risdate><volume>39</volume><issue>11</issue><spage>5931</spage><epage>5941</epage><pages>5931-5941</pages><issn>0360-3199</issn><eissn>1879-3487</eissn><coden>IJHEDX</coden><abstract>In high temperature proton exchange membrane (HT-PEM) fuel cells, waste heat at approximately 160 °C is produced, which can be used for thermal integration of solid state hydrogen storage systems. In the present study, an HT-PEM fuel cell stack (400 W) with direct liquid cooling is characterized and coupled to a separately characterized sodium alanate storage tank (300 g material). The coupled system is studied in steady state for 20 min operation and all relevant heat flows are determined. Even though heat losses at that specific power and temperature level cannot be completely avoided, it is demonstrated that the amount of heat transferred from the fuel cell stack to the cooling liquid circuit is sufficient to desorb the necessary amount of hydrogen from the storage tank. Furthermore, it is shown that the reaction rate of the sodium alanate at 160 °C and 1.7 bar is adequate to provide the hydrogen to the fuel cell stack. Based on these experimental investigations, a set of recommendations is given for the future design and layout of similar coupled systems. •Experimental results of direct coupling an HT-PEM fuel cell with sodium alanate tank.•Characterization of direct liquid cooled HT-PEM fuel cell.•Characterization of 300 g sodium alanate tank for coupling with fuel cell.•Recommendations for coupled systems.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijhydene.2014.01.127</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6091-0431</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0360-3199
ispartof International journal of hydrogen energy, 2014-04, Vol.39 (11), p.5931-5941
issn 0360-3199
1879-3487
language eng
recordid cdi_proquest_miscellaneous_1531024344
source Access via ScienceDirect (Elsevier)
subjects Alternative fuels. Production and utilization
Applied sciences
Coupling
Energy
Exact sciences and technology
Fuel cells
Fuels
Heat utilization
HT-PEM (liquid cooled)
Hydrogen
Hydrogen storage
Liquids
PBI-membrane
Proton exchange membrane fuel cells
Sodium
Sodium alanate
Stacks
Storage tanks
Tanks
title Experimental investigation of a liquid cooled high temperature proton exchange membrane (HT-PEM) fuel cell coupled to a sodium alanate tank
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T11%3A34%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20investigation%20of%20a%20liquid%20cooled%20high%20temperature%20proton%20exchange%20membrane%20(HT-PEM)%20fuel%20cell%20coupled%20to%20a%20sodium%20alanate%20tank&rft.jtitle=International%20journal%20of%20hydrogen%20energy&rft.au=Weiss-Ungeth%C3%BCm,%20J%C3%B6rg&rft.date=2014-04-04&rft.volume=39&rft.issue=11&rft.spage=5931&rft.epage=5941&rft.pages=5931-5941&rft.issn=0360-3199&rft.eissn=1879-3487&rft.coden=IJHEDX&rft_id=info:doi/10.1016/j.ijhydene.2014.01.127&rft_dat=%3Cproquest_cross%3E1531024344%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1531024344&rft_id=info:pmid/&rft_els_id=S0360319914002079&rfr_iscdi=true