Experimental investigation of a liquid cooled high temperature proton exchange membrane (HT-PEM) fuel cell coupled to a sodium alanate tank
In high temperature proton exchange membrane (HT-PEM) fuel cells, waste heat at approximately 160 °C is produced, which can be used for thermal integration of solid state hydrogen storage systems. In the present study, an HT-PEM fuel cell stack (400 W) with direct liquid cooling is characterized and...
Gespeichert in:
Veröffentlicht in: | International journal of hydrogen energy 2014-04, Vol.39 (11), p.5931-5941 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5941 |
---|---|
container_issue | 11 |
container_start_page | 5931 |
container_title | International journal of hydrogen energy |
container_volume | 39 |
creator | Weiss-Ungethüm, Jörg Bürger, Inga Schmidt, Niko Linder, Marc Kallo, Josef |
description | In high temperature proton exchange membrane (HT-PEM) fuel cells, waste heat at approximately 160 °C is produced, which can be used for thermal integration of solid state hydrogen storage systems. In the present study, an HT-PEM fuel cell stack (400 W) with direct liquid cooling is characterized and coupled to a separately characterized sodium alanate storage tank (300 g material). The coupled system is studied in steady state for 20 min operation and all relevant heat flows are determined. Even though heat losses at that specific power and temperature level cannot be completely avoided, it is demonstrated that the amount of heat transferred from the fuel cell stack to the cooling liquid circuit is sufficient to desorb the necessary amount of hydrogen from the storage tank. Furthermore, it is shown that the reaction rate of the sodium alanate at 160 °C and 1.7 bar is adequate to provide the hydrogen to the fuel cell stack. Based on these experimental investigations, a set of recommendations is given for the future design and layout of similar coupled systems.
•Experimental results of direct coupling an HT-PEM fuel cell with sodium alanate tank.•Characterization of direct liquid cooled HT-PEM fuel cell.•Characterization of 300 g sodium alanate tank for coupling with fuel cell.•Recommendations for coupled systems. |
doi_str_mv | 10.1016/j.ijhydene.2014.01.127 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1531024344</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360319914002079</els_id><sourcerecordid>1531024344</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-7b624da841d7d3e22677aebea9cf829204b79fdcc06cb0afca78eb8935c314e63</originalsourceid><addsrcrecordid>eNqFkMtu1DAUhi0EEkPhFZA3SGWR4FvjZAeqBlqpCBZlbZ3YJzMeEnsaO1X7DLw0jqZ0y8be_LfzEfKes5oz3nw61P6wf3QYsBaMq5rxmgv9gmx4q7tKqla_JBsmG1ZJ3nWvyZuUDoxxzVS3IX-2D0ec_YQhw0h9uMeU_Q6yj4HGgQId_d3iHbUxjujo3u_2NONUPJCXGelxjrlI8cHuIeyQTjj1MwSk51e31c_t9490WHCkFsfyxOW4huRYclN0fpkojBAgI80Qfr8lrwYYE757-s_Ir6_b28ur6ubHt-vLLzeVVVzkSveNUA5axZ12EoVotAbsETo7tKITTPW6G5y1rLE9g8GCbrFvO3lhJVfYyDNyfsot4--WcrCZfFoXlt1xSYZfSM6EkkoVaXOS2jmmNONgjgUWzI-GM7PSNwfzj75Z6RvGTaFfjB-eOiBZGIfCxPr07BatUryRa8Hnkw7LwfceZ5Osx2DR-RltNi76_1X9BV4QoOo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1531024344</pqid></control><display><type>article</type><title>Experimental investigation of a liquid cooled high temperature proton exchange membrane (HT-PEM) fuel cell coupled to a sodium alanate tank</title><source>Access via ScienceDirect (Elsevier)</source><creator>Weiss-Ungethüm, Jörg ; Bürger, Inga ; Schmidt, Niko ; Linder, Marc ; Kallo, Josef</creator><creatorcontrib>Weiss-Ungethüm, Jörg ; Bürger, Inga ; Schmidt, Niko ; Linder, Marc ; Kallo, Josef</creatorcontrib><description>In high temperature proton exchange membrane (HT-PEM) fuel cells, waste heat at approximately 160 °C is produced, which can be used for thermal integration of solid state hydrogen storage systems. In the present study, an HT-PEM fuel cell stack (400 W) with direct liquid cooling is characterized and coupled to a separately characterized sodium alanate storage tank (300 g material). The coupled system is studied in steady state for 20 min operation and all relevant heat flows are determined. Even though heat losses at that specific power and temperature level cannot be completely avoided, it is demonstrated that the amount of heat transferred from the fuel cell stack to the cooling liquid circuit is sufficient to desorb the necessary amount of hydrogen from the storage tank. Furthermore, it is shown that the reaction rate of the sodium alanate at 160 °C and 1.7 bar is adequate to provide the hydrogen to the fuel cell stack. Based on these experimental investigations, a set of recommendations is given for the future design and layout of similar coupled systems.
•Experimental results of direct coupling an HT-PEM fuel cell with sodium alanate tank.•Characterization of direct liquid cooled HT-PEM fuel cell.•Characterization of 300 g sodium alanate tank for coupling with fuel cell.•Recommendations for coupled systems.</description><identifier>ISSN: 0360-3199</identifier><identifier>EISSN: 1879-3487</identifier><identifier>DOI: 10.1016/j.ijhydene.2014.01.127</identifier><identifier>CODEN: IJHEDX</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Alternative fuels. Production and utilization ; Applied sciences ; Coupling ; Energy ; Exact sciences and technology ; Fuel cells ; Fuels ; Heat utilization ; HT-PEM (liquid cooled) ; Hydrogen ; Hydrogen storage ; Liquids ; PBI-membrane ; Proton exchange membrane fuel cells ; Sodium ; Sodium alanate ; Stacks ; Storage tanks ; Tanks</subject><ispartof>International journal of hydrogen energy, 2014-04, Vol.39 (11), p.5931-5941</ispartof><rights>2014 Hydrogen Energy Publications, LLC.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-7b624da841d7d3e22677aebea9cf829204b79fdcc06cb0afca78eb8935c314e63</citedby><cites>FETCH-LOGICAL-c412t-7b624da841d7d3e22677aebea9cf829204b79fdcc06cb0afca78eb8935c314e63</cites><orcidid>0000-0002-6091-0431</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijhydene.2014.01.127$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28441634$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Weiss-Ungethüm, Jörg</creatorcontrib><creatorcontrib>Bürger, Inga</creatorcontrib><creatorcontrib>Schmidt, Niko</creatorcontrib><creatorcontrib>Linder, Marc</creatorcontrib><creatorcontrib>Kallo, Josef</creatorcontrib><title>Experimental investigation of a liquid cooled high temperature proton exchange membrane (HT-PEM) fuel cell coupled to a sodium alanate tank</title><title>International journal of hydrogen energy</title><description>In high temperature proton exchange membrane (HT-PEM) fuel cells, waste heat at approximately 160 °C is produced, which can be used for thermal integration of solid state hydrogen storage systems. In the present study, an HT-PEM fuel cell stack (400 W) with direct liquid cooling is characterized and coupled to a separately characterized sodium alanate storage tank (300 g material). The coupled system is studied in steady state for 20 min operation and all relevant heat flows are determined. Even though heat losses at that specific power and temperature level cannot be completely avoided, it is demonstrated that the amount of heat transferred from the fuel cell stack to the cooling liquid circuit is sufficient to desorb the necessary amount of hydrogen from the storage tank. Furthermore, it is shown that the reaction rate of the sodium alanate at 160 °C and 1.7 bar is adequate to provide the hydrogen to the fuel cell stack. Based on these experimental investigations, a set of recommendations is given for the future design and layout of similar coupled systems.
•Experimental results of direct coupling an HT-PEM fuel cell with sodium alanate tank.•Characterization of direct liquid cooled HT-PEM fuel cell.•Characterization of 300 g sodium alanate tank for coupling with fuel cell.•Recommendations for coupled systems.</description><subject>Alternative fuels. Production and utilization</subject><subject>Applied sciences</subject><subject>Coupling</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Fuel cells</subject><subject>Fuels</subject><subject>Heat utilization</subject><subject>HT-PEM (liquid cooled)</subject><subject>Hydrogen</subject><subject>Hydrogen storage</subject><subject>Liquids</subject><subject>PBI-membrane</subject><subject>Proton exchange membrane fuel cells</subject><subject>Sodium</subject><subject>Sodium alanate</subject><subject>Stacks</subject><subject>Storage tanks</subject><subject>Tanks</subject><issn>0360-3199</issn><issn>1879-3487</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkMtu1DAUhi0EEkPhFZA3SGWR4FvjZAeqBlqpCBZlbZ3YJzMeEnsaO1X7DLw0jqZ0y8be_LfzEfKes5oz3nw61P6wf3QYsBaMq5rxmgv9gmx4q7tKqla_JBsmG1ZJ3nWvyZuUDoxxzVS3IX-2D0ec_YQhw0h9uMeU_Q6yj4HGgQId_d3iHbUxjujo3u_2NONUPJCXGelxjrlI8cHuIeyQTjj1MwSk51e31c_t9490WHCkFsfyxOW4huRYclN0fpkojBAgI80Qfr8lrwYYE757-s_Ir6_b28ur6ubHt-vLLzeVVVzkSveNUA5axZ12EoVotAbsETo7tKITTPW6G5y1rLE9g8GCbrFvO3lhJVfYyDNyfsot4--WcrCZfFoXlt1xSYZfSM6EkkoVaXOS2jmmNONgjgUWzI-GM7PSNwfzj75Z6RvGTaFfjB-eOiBZGIfCxPr07BatUryRa8Hnkw7LwfceZ5Osx2DR-RltNi76_1X9BV4QoOo</recordid><startdate>20140404</startdate><enddate>20140404</enddate><creator>Weiss-Ungethüm, Jörg</creator><creator>Bürger, Inga</creator><creator>Schmidt, Niko</creator><creator>Linder, Marc</creator><creator>Kallo, Josef</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6091-0431</orcidid></search><sort><creationdate>20140404</creationdate><title>Experimental investigation of a liquid cooled high temperature proton exchange membrane (HT-PEM) fuel cell coupled to a sodium alanate tank</title><author>Weiss-Ungethüm, Jörg ; Bürger, Inga ; Schmidt, Niko ; Linder, Marc ; Kallo, Josef</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-7b624da841d7d3e22677aebea9cf829204b79fdcc06cb0afca78eb8935c314e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Alternative fuels. Production and utilization</topic><topic>Applied sciences</topic><topic>Coupling</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Fuel cells</topic><topic>Fuels</topic><topic>Heat utilization</topic><topic>HT-PEM (liquid cooled)</topic><topic>Hydrogen</topic><topic>Hydrogen storage</topic><topic>Liquids</topic><topic>PBI-membrane</topic><topic>Proton exchange membrane fuel cells</topic><topic>Sodium</topic><topic>Sodium alanate</topic><topic>Stacks</topic><topic>Storage tanks</topic><topic>Tanks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weiss-Ungethüm, Jörg</creatorcontrib><creatorcontrib>Bürger, Inga</creatorcontrib><creatorcontrib>Schmidt, Niko</creatorcontrib><creatorcontrib>Linder, Marc</creatorcontrib><creatorcontrib>Kallo, Josef</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of hydrogen energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weiss-Ungethüm, Jörg</au><au>Bürger, Inga</au><au>Schmidt, Niko</au><au>Linder, Marc</au><au>Kallo, Josef</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental investigation of a liquid cooled high temperature proton exchange membrane (HT-PEM) fuel cell coupled to a sodium alanate tank</atitle><jtitle>International journal of hydrogen energy</jtitle><date>2014-04-04</date><risdate>2014</risdate><volume>39</volume><issue>11</issue><spage>5931</spage><epage>5941</epage><pages>5931-5941</pages><issn>0360-3199</issn><eissn>1879-3487</eissn><coden>IJHEDX</coden><abstract>In high temperature proton exchange membrane (HT-PEM) fuel cells, waste heat at approximately 160 °C is produced, which can be used for thermal integration of solid state hydrogen storage systems. In the present study, an HT-PEM fuel cell stack (400 W) with direct liquid cooling is characterized and coupled to a separately characterized sodium alanate storage tank (300 g material). The coupled system is studied in steady state for 20 min operation and all relevant heat flows are determined. Even though heat losses at that specific power and temperature level cannot be completely avoided, it is demonstrated that the amount of heat transferred from the fuel cell stack to the cooling liquid circuit is sufficient to desorb the necessary amount of hydrogen from the storage tank. Furthermore, it is shown that the reaction rate of the sodium alanate at 160 °C and 1.7 bar is adequate to provide the hydrogen to the fuel cell stack. Based on these experimental investigations, a set of recommendations is given for the future design and layout of similar coupled systems.
•Experimental results of direct coupling an HT-PEM fuel cell with sodium alanate tank.•Characterization of direct liquid cooled HT-PEM fuel cell.•Characterization of 300 g sodium alanate tank for coupling with fuel cell.•Recommendations for coupled systems.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijhydene.2014.01.127</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6091-0431</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0360-3199 |
ispartof | International journal of hydrogen energy, 2014-04, Vol.39 (11), p.5931-5941 |
issn | 0360-3199 1879-3487 |
language | eng |
recordid | cdi_proquest_miscellaneous_1531024344 |
source | Access via ScienceDirect (Elsevier) |
subjects | Alternative fuels. Production and utilization Applied sciences Coupling Energy Exact sciences and technology Fuel cells Fuels Heat utilization HT-PEM (liquid cooled) Hydrogen Hydrogen storage Liquids PBI-membrane Proton exchange membrane fuel cells Sodium Sodium alanate Stacks Storage tanks Tanks |
title | Experimental investigation of a liquid cooled high temperature proton exchange membrane (HT-PEM) fuel cell coupled to a sodium alanate tank |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T11%3A34%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20investigation%20of%20a%20liquid%20cooled%20high%20temperature%20proton%20exchange%20membrane%20(HT-PEM)%20fuel%20cell%20coupled%20to%20a%20sodium%20alanate%20tank&rft.jtitle=International%20journal%20of%20hydrogen%20energy&rft.au=Weiss-Ungeth%C3%BCm,%20J%C3%B6rg&rft.date=2014-04-04&rft.volume=39&rft.issue=11&rft.spage=5931&rft.epage=5941&rft.pages=5931-5941&rft.issn=0360-3199&rft.eissn=1879-3487&rft.coden=IJHEDX&rft_id=info:doi/10.1016/j.ijhydene.2014.01.127&rft_dat=%3Cproquest_cross%3E1531024344%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1531024344&rft_id=info:pmid/&rft_els_id=S0360319914002079&rfr_iscdi=true |