Convergence and stability of Euler method for impulsive stochastic delay differential equations
This paper deals with the mean square convergence and mean square exponential stability of an Euler scheme for a linear impulsive stochastic delay differential equation (ISDDE). First, a method is presented to take the grid points of the numerical scheme. Based on this method, a fixed stepsize numer...
Gespeichert in:
Veröffentlicht in: | Applied mathematics and computation 2014-02, Vol.229, p.151-158 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 158 |
---|---|
container_issue | |
container_start_page | 151 |
container_title | Applied mathematics and computation |
container_volume | 229 |
creator | Wu, Kaining Ding, Xiaohua |
description | This paper deals with the mean square convergence and mean square exponential stability of an Euler scheme for a linear impulsive stochastic delay differential equation (ISDDE). First, a method is presented to take the grid points of the numerical scheme. Based on this method, a fixed stepsize numerical scheme is provided. Based on the method of fixed stepsize grid points, an Euler method is given. The convergence of the Euler method is considered and it is shown the Euler scheme is of mean square convergence with order 1/2. Then the mean square exponential stability is studied. Using Lyapunov-like techniques, the sufficient conditions to guarantee the mean square exponential stability are obtained. The result shows that the mean square exponential stability may be reproduced by the Euler scheme for linear ISDDEs, under the restriction on the stepsize. At last, examples are given to illustrate our results. |
doi_str_mv | 10.1016/j.amc.2013.12.041 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1531024144</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0096300313013179</els_id><sourcerecordid>1531024144</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-806c2fa1dbfa630c89b857348668ff225f4e71fe1c7d1ce9b1140bdb605ff0ed3</originalsourceid><addsrcrecordid>eNp9kDFv2zAQRomiBeqk-QHdOHaReidSlIxOhZGkAQJkSWaCIo8JDUl0SMqA_31kOHOnW977gHuM_USoEVD93tdmsnUDKGpsapD4hW2w70TVKrn9yjYAW1UJAPGdXeW8B4BOodwwvYvzkdIrzZa4mR3PxQxhDOXEo-e3y0iJT1TeouM-Jh6mwzLmcKSVi_bN5BIsdzSaE3fBe0o0l2BGTu-LKSHO-Qf75s2Y6ebzXrOXu9vn3b_q8en-Yff3sbJCQKl6ULbxBt3gjRJg--3Qt52QvVK9903TekkdekLbObS0HRAlDG5Q0HoP5MQ1-3XZPaT4vlAuegrZ0jiameKSNbYCoZEo5YriBbUp5pzI60MKk0knjaDPMfVerzH1OabGRq8xV-fPxaH1h2OgpLMN52YuJLJFuxj-Y38AOXx-kg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1531024144</pqid></control><display><type>article</type><title>Convergence and stability of Euler method for impulsive stochastic delay differential equations</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>Wu, Kaining ; Ding, Xiaohua</creator><creatorcontrib>Wu, Kaining ; Ding, Xiaohua</creatorcontrib><description>This paper deals with the mean square convergence and mean square exponential stability of an Euler scheme for a linear impulsive stochastic delay differential equation (ISDDE). First, a method is presented to take the grid points of the numerical scheme. Based on this method, a fixed stepsize numerical scheme is provided. Based on the method of fixed stepsize grid points, an Euler method is given. The convergence of the Euler method is considered and it is shown the Euler scheme is of mean square convergence with order 1/2. Then the mean square exponential stability is studied. Using Lyapunov-like techniques, the sufficient conditions to guarantee the mean square exponential stability are obtained. The result shows that the mean square exponential stability may be reproduced by the Euler scheme for linear ISDDEs, under the restriction on the stepsize. At last, examples are given to illustrate our results.</description><identifier>ISSN: 0096-3003</identifier><identifier>EISSN: 1873-5649</identifier><identifier>DOI: 10.1016/j.amc.2013.12.041</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Constrictions ; Convergence ; Delay ; Differential equations ; Euler method ; Impulsive stochastic delay differential equations ; Mathematical models ; Mean square exponential stability ; Mean square values ; Numerical method ; Stability ; Stochasticity</subject><ispartof>Applied mathematics and computation, 2014-02, Vol.229, p.151-158</ispartof><rights>2013 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-806c2fa1dbfa630c89b857348668ff225f4e71fe1c7d1ce9b1140bdb605ff0ed3</citedby><cites>FETCH-LOGICAL-c330t-806c2fa1dbfa630c89b857348668ff225f4e71fe1c7d1ce9b1140bdb605ff0ed3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.amc.2013.12.041$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27907,27908,45978</link.rule.ids></links><search><creatorcontrib>Wu, Kaining</creatorcontrib><creatorcontrib>Ding, Xiaohua</creatorcontrib><title>Convergence and stability of Euler method for impulsive stochastic delay differential equations</title><title>Applied mathematics and computation</title><description>This paper deals with the mean square convergence and mean square exponential stability of an Euler scheme for a linear impulsive stochastic delay differential equation (ISDDE). First, a method is presented to take the grid points of the numerical scheme. Based on this method, a fixed stepsize numerical scheme is provided. Based on the method of fixed stepsize grid points, an Euler method is given. The convergence of the Euler method is considered and it is shown the Euler scheme is of mean square convergence with order 1/2. Then the mean square exponential stability is studied. Using Lyapunov-like techniques, the sufficient conditions to guarantee the mean square exponential stability are obtained. The result shows that the mean square exponential stability may be reproduced by the Euler scheme for linear ISDDEs, under the restriction on the stepsize. At last, examples are given to illustrate our results.</description><subject>Constrictions</subject><subject>Convergence</subject><subject>Delay</subject><subject>Differential equations</subject><subject>Euler method</subject><subject>Impulsive stochastic delay differential equations</subject><subject>Mathematical models</subject><subject>Mean square exponential stability</subject><subject>Mean square values</subject><subject>Numerical method</subject><subject>Stability</subject><subject>Stochasticity</subject><issn>0096-3003</issn><issn>1873-5649</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kDFv2zAQRomiBeqk-QHdOHaReidSlIxOhZGkAQJkSWaCIo8JDUl0SMqA_31kOHOnW977gHuM_USoEVD93tdmsnUDKGpsapD4hW2w70TVKrn9yjYAW1UJAPGdXeW8B4BOodwwvYvzkdIrzZa4mR3PxQxhDOXEo-e3y0iJT1TeouM-Jh6mwzLmcKSVi_bN5BIsdzSaE3fBe0o0l2BGTu-LKSHO-Qf75s2Y6ebzXrOXu9vn3b_q8en-Yff3sbJCQKl6ULbxBt3gjRJg--3Qt52QvVK9903TekkdekLbObS0HRAlDG5Q0HoP5MQ1-3XZPaT4vlAuegrZ0jiameKSNbYCoZEo5YriBbUp5pzI60MKk0knjaDPMfVerzH1OabGRq8xV-fPxaH1h2OgpLMN52YuJLJFuxj-Y38AOXx-kg</recordid><startdate>20140225</startdate><enddate>20140225</enddate><creator>Wu, Kaining</creator><creator>Ding, Xiaohua</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140225</creationdate><title>Convergence and stability of Euler method for impulsive stochastic delay differential equations</title><author>Wu, Kaining ; Ding, Xiaohua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-806c2fa1dbfa630c89b857348668ff225f4e71fe1c7d1ce9b1140bdb605ff0ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Constrictions</topic><topic>Convergence</topic><topic>Delay</topic><topic>Differential equations</topic><topic>Euler method</topic><topic>Impulsive stochastic delay differential equations</topic><topic>Mathematical models</topic><topic>Mean square exponential stability</topic><topic>Mean square values</topic><topic>Numerical method</topic><topic>Stability</topic><topic>Stochasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Kaining</creatorcontrib><creatorcontrib>Ding, Xiaohua</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied mathematics and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Kaining</au><au>Ding, Xiaohua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convergence and stability of Euler method for impulsive stochastic delay differential equations</atitle><jtitle>Applied mathematics and computation</jtitle><date>2014-02-25</date><risdate>2014</risdate><volume>229</volume><spage>151</spage><epage>158</epage><pages>151-158</pages><issn>0096-3003</issn><eissn>1873-5649</eissn><abstract>This paper deals with the mean square convergence and mean square exponential stability of an Euler scheme for a linear impulsive stochastic delay differential equation (ISDDE). First, a method is presented to take the grid points of the numerical scheme. Based on this method, a fixed stepsize numerical scheme is provided. Based on the method of fixed stepsize grid points, an Euler method is given. The convergence of the Euler method is considered and it is shown the Euler scheme is of mean square convergence with order 1/2. Then the mean square exponential stability is studied. Using Lyapunov-like techniques, the sufficient conditions to guarantee the mean square exponential stability are obtained. The result shows that the mean square exponential stability may be reproduced by the Euler scheme for linear ISDDEs, under the restriction on the stepsize. At last, examples are given to illustrate our results.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.amc.2013.12.041</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0096-3003 |
ispartof | Applied mathematics and computation, 2014-02, Vol.229, p.151-158 |
issn | 0096-3003 1873-5649 |
language | eng |
recordid | cdi_proquest_miscellaneous_1531024144 |
source | Elsevier ScienceDirect Journals Complete - AutoHoldings |
subjects | Constrictions Convergence Delay Differential equations Euler method Impulsive stochastic delay differential equations Mathematical models Mean square exponential stability Mean square values Numerical method Stability Stochasticity |
title | Convergence and stability of Euler method for impulsive stochastic delay differential equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T11%3A15%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convergence%20and%20stability%20of%20Euler%20method%20for%20impulsive%20stochastic%20delay%20differential%20equations&rft.jtitle=Applied%20mathematics%20and%20computation&rft.au=Wu,%20Kaining&rft.date=2014-02-25&rft.volume=229&rft.spage=151&rft.epage=158&rft.pages=151-158&rft.issn=0096-3003&rft.eissn=1873-5649&rft_id=info:doi/10.1016/j.amc.2013.12.041&rft_dat=%3Cproquest_cross%3E1531024144%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1531024144&rft_id=info:pmid/&rft_els_id=S0096300313013179&rfr_iscdi=true |