Convergence and stability of Euler method for impulsive stochastic delay differential equations

This paper deals with the mean square convergence and mean square exponential stability of an Euler scheme for a linear impulsive stochastic delay differential equation (ISDDE). First, a method is presented to take the grid points of the numerical scheme. Based on this method, a fixed stepsize numer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics and computation 2014-02, Vol.229, p.151-158
Hauptverfasser: Wu, Kaining, Ding, Xiaohua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 158
container_issue
container_start_page 151
container_title Applied mathematics and computation
container_volume 229
creator Wu, Kaining
Ding, Xiaohua
description This paper deals with the mean square convergence and mean square exponential stability of an Euler scheme for a linear impulsive stochastic delay differential equation (ISDDE). First, a method is presented to take the grid points of the numerical scheme. Based on this method, a fixed stepsize numerical scheme is provided. Based on the method of fixed stepsize grid points, an Euler method is given. The convergence of the Euler method is considered and it is shown the Euler scheme is of mean square convergence with order 1/2. Then the mean square exponential stability is studied. Using Lyapunov-like techniques, the sufficient conditions to guarantee the mean square exponential stability are obtained. The result shows that the mean square exponential stability may be reproduced by the Euler scheme for linear ISDDEs, under the restriction on the stepsize. At last, examples are given to illustrate our results.
doi_str_mv 10.1016/j.amc.2013.12.041
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1531024144</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0096300313013179</els_id><sourcerecordid>1531024144</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-806c2fa1dbfa630c89b857348668ff225f4e71fe1c7d1ce9b1140bdb605ff0ed3</originalsourceid><addsrcrecordid>eNp9kDFv2zAQRomiBeqk-QHdOHaReidSlIxOhZGkAQJkSWaCIo8JDUl0SMqA_31kOHOnW977gHuM_USoEVD93tdmsnUDKGpsapD4hW2w70TVKrn9yjYAW1UJAPGdXeW8B4BOodwwvYvzkdIrzZa4mR3PxQxhDOXEo-e3y0iJT1TeouM-Jh6mwzLmcKSVi_bN5BIsdzSaE3fBe0o0l2BGTu-LKSHO-Qf75s2Y6ebzXrOXu9vn3b_q8en-Yff3sbJCQKl6ULbxBt3gjRJg--3Qt52QvVK9903TekkdekLbObS0HRAlDG5Q0HoP5MQ1-3XZPaT4vlAuegrZ0jiameKSNbYCoZEo5YriBbUp5pzI60MKk0knjaDPMfVerzH1OabGRq8xV-fPxaH1h2OgpLMN52YuJLJFuxj-Y38AOXx-kg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1531024144</pqid></control><display><type>article</type><title>Convergence and stability of Euler method for impulsive stochastic delay differential equations</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>Wu, Kaining ; Ding, Xiaohua</creator><creatorcontrib>Wu, Kaining ; Ding, Xiaohua</creatorcontrib><description>This paper deals with the mean square convergence and mean square exponential stability of an Euler scheme for a linear impulsive stochastic delay differential equation (ISDDE). First, a method is presented to take the grid points of the numerical scheme. Based on this method, a fixed stepsize numerical scheme is provided. Based on the method of fixed stepsize grid points, an Euler method is given. The convergence of the Euler method is considered and it is shown the Euler scheme is of mean square convergence with order 1/2. Then the mean square exponential stability is studied. Using Lyapunov-like techniques, the sufficient conditions to guarantee the mean square exponential stability are obtained. The result shows that the mean square exponential stability may be reproduced by the Euler scheme for linear ISDDEs, under the restriction on the stepsize. At last, examples are given to illustrate our results.</description><identifier>ISSN: 0096-3003</identifier><identifier>EISSN: 1873-5649</identifier><identifier>DOI: 10.1016/j.amc.2013.12.041</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Constrictions ; Convergence ; Delay ; Differential equations ; Euler method ; Impulsive stochastic delay differential equations ; Mathematical models ; Mean square exponential stability ; Mean square values ; Numerical method ; Stability ; Stochasticity</subject><ispartof>Applied mathematics and computation, 2014-02, Vol.229, p.151-158</ispartof><rights>2013 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-806c2fa1dbfa630c89b857348668ff225f4e71fe1c7d1ce9b1140bdb605ff0ed3</citedby><cites>FETCH-LOGICAL-c330t-806c2fa1dbfa630c89b857348668ff225f4e71fe1c7d1ce9b1140bdb605ff0ed3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.amc.2013.12.041$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27907,27908,45978</link.rule.ids></links><search><creatorcontrib>Wu, Kaining</creatorcontrib><creatorcontrib>Ding, Xiaohua</creatorcontrib><title>Convergence and stability of Euler method for impulsive stochastic delay differential equations</title><title>Applied mathematics and computation</title><description>This paper deals with the mean square convergence and mean square exponential stability of an Euler scheme for a linear impulsive stochastic delay differential equation (ISDDE). First, a method is presented to take the grid points of the numerical scheme. Based on this method, a fixed stepsize numerical scheme is provided. Based on the method of fixed stepsize grid points, an Euler method is given. The convergence of the Euler method is considered and it is shown the Euler scheme is of mean square convergence with order 1/2. Then the mean square exponential stability is studied. Using Lyapunov-like techniques, the sufficient conditions to guarantee the mean square exponential stability are obtained. The result shows that the mean square exponential stability may be reproduced by the Euler scheme for linear ISDDEs, under the restriction on the stepsize. At last, examples are given to illustrate our results.</description><subject>Constrictions</subject><subject>Convergence</subject><subject>Delay</subject><subject>Differential equations</subject><subject>Euler method</subject><subject>Impulsive stochastic delay differential equations</subject><subject>Mathematical models</subject><subject>Mean square exponential stability</subject><subject>Mean square values</subject><subject>Numerical method</subject><subject>Stability</subject><subject>Stochasticity</subject><issn>0096-3003</issn><issn>1873-5649</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kDFv2zAQRomiBeqk-QHdOHaReidSlIxOhZGkAQJkSWaCIo8JDUl0SMqA_31kOHOnW977gHuM_USoEVD93tdmsnUDKGpsapD4hW2w70TVKrn9yjYAW1UJAPGdXeW8B4BOodwwvYvzkdIrzZa4mR3PxQxhDOXEo-e3y0iJT1TeouM-Jh6mwzLmcKSVi_bN5BIsdzSaE3fBe0o0l2BGTu-LKSHO-Qf75s2Y6ebzXrOXu9vn3b_q8en-Yff3sbJCQKl6ULbxBt3gjRJg--3Qt52QvVK9903TekkdekLbObS0HRAlDG5Q0HoP5MQ1-3XZPaT4vlAuegrZ0jiameKSNbYCoZEo5YriBbUp5pzI60MKk0knjaDPMfVerzH1OabGRq8xV-fPxaH1h2OgpLMN52YuJLJFuxj-Y38AOXx-kg</recordid><startdate>20140225</startdate><enddate>20140225</enddate><creator>Wu, Kaining</creator><creator>Ding, Xiaohua</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140225</creationdate><title>Convergence and stability of Euler method for impulsive stochastic delay differential equations</title><author>Wu, Kaining ; Ding, Xiaohua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-806c2fa1dbfa630c89b857348668ff225f4e71fe1c7d1ce9b1140bdb605ff0ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Constrictions</topic><topic>Convergence</topic><topic>Delay</topic><topic>Differential equations</topic><topic>Euler method</topic><topic>Impulsive stochastic delay differential equations</topic><topic>Mathematical models</topic><topic>Mean square exponential stability</topic><topic>Mean square values</topic><topic>Numerical method</topic><topic>Stability</topic><topic>Stochasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Kaining</creatorcontrib><creatorcontrib>Ding, Xiaohua</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied mathematics and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Kaining</au><au>Ding, Xiaohua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convergence and stability of Euler method for impulsive stochastic delay differential equations</atitle><jtitle>Applied mathematics and computation</jtitle><date>2014-02-25</date><risdate>2014</risdate><volume>229</volume><spage>151</spage><epage>158</epage><pages>151-158</pages><issn>0096-3003</issn><eissn>1873-5649</eissn><abstract>This paper deals with the mean square convergence and mean square exponential stability of an Euler scheme for a linear impulsive stochastic delay differential equation (ISDDE). First, a method is presented to take the grid points of the numerical scheme. Based on this method, a fixed stepsize numerical scheme is provided. Based on the method of fixed stepsize grid points, an Euler method is given. The convergence of the Euler method is considered and it is shown the Euler scheme is of mean square convergence with order 1/2. Then the mean square exponential stability is studied. Using Lyapunov-like techniques, the sufficient conditions to guarantee the mean square exponential stability are obtained. The result shows that the mean square exponential stability may be reproduced by the Euler scheme for linear ISDDEs, under the restriction on the stepsize. At last, examples are given to illustrate our results.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.amc.2013.12.041</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0096-3003
ispartof Applied mathematics and computation, 2014-02, Vol.229, p.151-158
issn 0096-3003
1873-5649
language eng
recordid cdi_proquest_miscellaneous_1531024144
source Elsevier ScienceDirect Journals Complete - AutoHoldings
subjects Constrictions
Convergence
Delay
Differential equations
Euler method
Impulsive stochastic delay differential equations
Mathematical models
Mean square exponential stability
Mean square values
Numerical method
Stability
Stochasticity
title Convergence and stability of Euler method for impulsive stochastic delay differential equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T11%3A15%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convergence%20and%20stability%20of%20Euler%20method%20for%20impulsive%20stochastic%20delay%20differential%20equations&rft.jtitle=Applied%20mathematics%20and%20computation&rft.au=Wu,%20Kaining&rft.date=2014-02-25&rft.volume=229&rft.spage=151&rft.epage=158&rft.pages=151-158&rft.issn=0096-3003&rft.eissn=1873-5649&rft_id=info:doi/10.1016/j.amc.2013.12.041&rft_dat=%3Cproquest_cross%3E1531024144%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1531024144&rft_id=info:pmid/&rft_els_id=S0096300313013179&rfr_iscdi=true