Space environmental testing of flexible coverglass alternatives based on siloxanes

With the development of thin-film, high-efficient III–V solar cells using the epitaxial lift-off technique, flexible solar panels for space applications can be designed. Besides new deployment options, this also reduces the mass and thus launch costs of a satellite. One requirement for such a flexib...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymer degradation and stability 2013-12, Vol.98 (12), p.2503-2511
Hauptverfasser: Smeenk, N.J., Mooney, C., Feenstra, J., Mulder, P., Rohr, T., Semprimoschnig, C.O.A., Vlieg, E., Schermer, J.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2511
container_issue 12
container_start_page 2503
container_title Polymer degradation and stability
container_volume 98
creator Smeenk, N.J.
Mooney, C.
Feenstra, J.
Mulder, P.
Rohr, T.
Semprimoschnig, C.O.A.
Vlieg, E.
Schermer, J.J.
description With the development of thin-film, high-efficient III–V solar cells using the epitaxial lift-off technique, flexible solar panels for space applications can be designed. Besides new deployment options, this also reduces the mass and thus launch costs of a satellite. One requirement for such a flexible panel configuration is the replacement of the brittle coverglass, which shields the solar cells from the harsh space environment, by a flexible alternative. In this work we have tested several compositions of a polysiloxane candidate material for a flexible shielding layer by exposing them to high energy UV and electron radiation at elevated temperatures. It was found that irradiation by electrons with a fluence corresponding to 15 years in space produces little degradation. UV radiation, on the other hand, has a more pronounced impact on the material properties, causing a discolouration of the transparent material and for some compositions even cracking of the samples.
doi_str_mv 10.1016/j.polymdegradstab.2013.09.008
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1531021392</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0141391013002966</els_id><sourcerecordid>1531021392</sourcerecordid><originalsourceid>FETCH-LOGICAL-c516t-3b320fcde4d3319bd69838f37f1d1ab034115f14d802339671ea68573203762b3</originalsourceid><addsrcrecordid>eNqNkLFqHDEQhkVIIBfHz2A1hjS70Ui72lWRIpjEDhgCcVwLrTQ6dOiki7Q-7LePzJkUrjLNNN_88_MRcgmsBwby864_5Pi0d7gtxtXVLD1nIHqmesbmN2QD8yQ6Lji8JRsGA3RCAXtPPtS6Y22GETbk193BWKSYjqHktMe0mkhXrGtIW5o99REfwxKR2nzEso2mVmriiiWZNRyx0sVUdDQnWkPMjyZh_UjeeRMrnr_sM3L__dvvq5vu9uf1j6uvt50dQa6dWARn3jocnBCgFifVLGYvJg8OzMLEADB6GNzMuBBKToBGzuPUrsQk-SLOyKdT7qHkPw-tst6HajHGViI_VA2jAMZBKN7QLyfUllxrQa8PJexNedLA9LNLvdOvXOpnl5op3Vy2-8uXV6ZaE30xyYb6L4TPTE5qUo27OHHeZG22pTH3dy1INt2TkHJoxPWJwGbmGLDoagMmiy4UtKt2Ofxnp797UJ1G</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1531021392</pqid></control><display><type>article</type><title>Space environmental testing of flexible coverglass alternatives based on siloxanes</title><source>Access via ScienceDirect (Elsevier)</source><creator>Smeenk, N.J. ; Mooney, C. ; Feenstra, J. ; Mulder, P. ; Rohr, T. ; Semprimoschnig, C.O.A. ; Vlieg, E. ; Schermer, J.J.</creator><creatorcontrib>Smeenk, N.J. ; Mooney, C. ; Feenstra, J. ; Mulder, P. ; Rohr, T. ; Semprimoschnig, C.O.A. ; Vlieg, E. ; Schermer, J.J.</creatorcontrib><description>With the development of thin-film, high-efficient III–V solar cells using the epitaxial lift-off technique, flexible solar panels for space applications can be designed. Besides new deployment options, this also reduces the mass and thus launch costs of a satellite. One requirement for such a flexible panel configuration is the replacement of the brittle coverglass, which shields the solar cells from the harsh space environment, by a flexible alternative. In this work we have tested several compositions of a polysiloxane candidate material for a flexible shielding layer by exposing them to high energy UV and electron radiation at elevated temperatures. It was found that irradiation by electrons with a fluence corresponding to 15 years in space produces little degradation. UV radiation, on the other hand, has a more pronounced impact on the material properties, causing a discolouration of the transparent material and for some compositions even cracking of the samples.</description><identifier>ISSN: 0141-3910</identifier><identifier>EISSN: 1873-2321</identifier><identifier>DOI: 10.1016/j.polymdegradstab.2013.09.008</identifier><identifier>CODEN: PDSTDW</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Composites ; cracking ; Degradation ; discoloration ; Discolouration ; Electron irradiation ; electrons ; Energy ; Exact sciences and technology ; Forms of application and semi-finished materials ; irradiation ; Natural energy ; Panels ; Photovoltaic cells ; Photovoltaic conversion ; Polymer industry, paints, wood ; Polysiloxanes ; Siloxanes ; Solar cells ; Solar cells. Photoelectrochemical cells ; solar collectors ; Solar energy ; Space applications ; Space environment ; Technology of polymers ; temperature ; ultraviolet radiation ; UV degradation</subject><ispartof>Polymer degradation and stability, 2013-12, Vol.98 (12), p.2503-2511</ispartof><rights>2013 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c516t-3b320fcde4d3319bd69838f37f1d1ab034115f14d802339671ea68573203762b3</citedby><cites>FETCH-LOGICAL-c516t-3b320fcde4d3319bd69838f37f1d1ab034115f14d802339671ea68573203762b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.polymdegradstab.2013.09.008$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28067979$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Smeenk, N.J.</creatorcontrib><creatorcontrib>Mooney, C.</creatorcontrib><creatorcontrib>Feenstra, J.</creatorcontrib><creatorcontrib>Mulder, P.</creatorcontrib><creatorcontrib>Rohr, T.</creatorcontrib><creatorcontrib>Semprimoschnig, C.O.A.</creatorcontrib><creatorcontrib>Vlieg, E.</creatorcontrib><creatorcontrib>Schermer, J.J.</creatorcontrib><title>Space environmental testing of flexible coverglass alternatives based on siloxanes</title><title>Polymer degradation and stability</title><description>With the development of thin-film, high-efficient III–V solar cells using the epitaxial lift-off technique, flexible solar panels for space applications can be designed. Besides new deployment options, this also reduces the mass and thus launch costs of a satellite. One requirement for such a flexible panel configuration is the replacement of the brittle coverglass, which shields the solar cells from the harsh space environment, by a flexible alternative. In this work we have tested several compositions of a polysiloxane candidate material for a flexible shielding layer by exposing them to high energy UV and electron radiation at elevated temperatures. It was found that irradiation by electrons with a fluence corresponding to 15 years in space produces little degradation. UV radiation, on the other hand, has a more pronounced impact on the material properties, causing a discolouration of the transparent material and for some compositions even cracking of the samples.</description><subject>Applied sciences</subject><subject>Composites</subject><subject>cracking</subject><subject>Degradation</subject><subject>discoloration</subject><subject>Discolouration</subject><subject>Electron irradiation</subject><subject>electrons</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Forms of application and semi-finished materials</subject><subject>irradiation</subject><subject>Natural energy</subject><subject>Panels</subject><subject>Photovoltaic cells</subject><subject>Photovoltaic conversion</subject><subject>Polymer industry, paints, wood</subject><subject>Polysiloxanes</subject><subject>Siloxanes</subject><subject>Solar cells</subject><subject>Solar cells. Photoelectrochemical cells</subject><subject>solar collectors</subject><subject>Solar energy</subject><subject>Space applications</subject><subject>Space environment</subject><subject>Technology of polymers</subject><subject>temperature</subject><subject>ultraviolet radiation</subject><subject>UV degradation</subject><issn>0141-3910</issn><issn>1873-2321</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNkLFqHDEQhkVIIBfHz2A1hjS70Ui72lWRIpjEDhgCcVwLrTQ6dOiki7Q-7LePzJkUrjLNNN_88_MRcgmsBwby864_5Pi0d7gtxtXVLD1nIHqmesbmN2QD8yQ6Lji8JRsGA3RCAXtPPtS6Y22GETbk193BWKSYjqHktMe0mkhXrGtIW5o99REfwxKR2nzEso2mVmriiiWZNRyx0sVUdDQnWkPMjyZh_UjeeRMrnr_sM3L__dvvq5vu9uf1j6uvt50dQa6dWARn3jocnBCgFifVLGYvJg8OzMLEADB6GNzMuBBKToBGzuPUrsQk-SLOyKdT7qHkPw-tst6HajHGViI_VA2jAMZBKN7QLyfUllxrQa8PJexNedLA9LNLvdOvXOpnl5op3Vy2-8uXV6ZaE30xyYb6L4TPTE5qUo27OHHeZG22pTH3dy1INt2TkHJoxPWJwGbmGLDoagMmiy4UtKt2Ofxnp797UJ1G</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Smeenk, N.J.</creator><creator>Mooney, C.</creator><creator>Feenstra, J.</creator><creator>Mulder, P.</creator><creator>Rohr, T.</creator><creator>Semprimoschnig, C.O.A.</creator><creator>Vlieg, E.</creator><creator>Schermer, J.J.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20131201</creationdate><title>Space environmental testing of flexible coverglass alternatives based on siloxanes</title><author>Smeenk, N.J. ; Mooney, C. ; Feenstra, J. ; Mulder, P. ; Rohr, T. ; Semprimoschnig, C.O.A. ; Vlieg, E. ; Schermer, J.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c516t-3b320fcde4d3319bd69838f37f1d1ab034115f14d802339671ea68573203762b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Composites</topic><topic>cracking</topic><topic>Degradation</topic><topic>discoloration</topic><topic>Discolouration</topic><topic>Electron irradiation</topic><topic>electrons</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Forms of application and semi-finished materials</topic><topic>irradiation</topic><topic>Natural energy</topic><topic>Panels</topic><topic>Photovoltaic cells</topic><topic>Photovoltaic conversion</topic><topic>Polymer industry, paints, wood</topic><topic>Polysiloxanes</topic><topic>Siloxanes</topic><topic>Solar cells</topic><topic>Solar cells. Photoelectrochemical cells</topic><topic>solar collectors</topic><topic>Solar energy</topic><topic>Space applications</topic><topic>Space environment</topic><topic>Technology of polymers</topic><topic>temperature</topic><topic>ultraviolet radiation</topic><topic>UV degradation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smeenk, N.J.</creatorcontrib><creatorcontrib>Mooney, C.</creatorcontrib><creatorcontrib>Feenstra, J.</creatorcontrib><creatorcontrib>Mulder, P.</creatorcontrib><creatorcontrib>Rohr, T.</creatorcontrib><creatorcontrib>Semprimoschnig, C.O.A.</creatorcontrib><creatorcontrib>Vlieg, E.</creatorcontrib><creatorcontrib>Schermer, J.J.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Polymer degradation and stability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smeenk, N.J.</au><au>Mooney, C.</au><au>Feenstra, J.</au><au>Mulder, P.</au><au>Rohr, T.</au><au>Semprimoschnig, C.O.A.</au><au>Vlieg, E.</au><au>Schermer, J.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Space environmental testing of flexible coverglass alternatives based on siloxanes</atitle><jtitle>Polymer degradation and stability</jtitle><date>2013-12-01</date><risdate>2013</risdate><volume>98</volume><issue>12</issue><spage>2503</spage><epage>2511</epage><pages>2503-2511</pages><issn>0141-3910</issn><eissn>1873-2321</eissn><coden>PDSTDW</coden><abstract>With the development of thin-film, high-efficient III–V solar cells using the epitaxial lift-off technique, flexible solar panels for space applications can be designed. Besides new deployment options, this also reduces the mass and thus launch costs of a satellite. One requirement for such a flexible panel configuration is the replacement of the brittle coverglass, which shields the solar cells from the harsh space environment, by a flexible alternative. In this work we have tested several compositions of a polysiloxane candidate material for a flexible shielding layer by exposing them to high energy UV and electron radiation at elevated temperatures. It was found that irradiation by electrons with a fluence corresponding to 15 years in space produces little degradation. UV radiation, on the other hand, has a more pronounced impact on the material properties, causing a discolouration of the transparent material and for some compositions even cracking of the samples.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.polymdegradstab.2013.09.008</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0141-3910
ispartof Polymer degradation and stability, 2013-12, Vol.98 (12), p.2503-2511
issn 0141-3910
1873-2321
language eng
recordid cdi_proquest_miscellaneous_1531021392
source Access via ScienceDirect (Elsevier)
subjects Applied sciences
Composites
cracking
Degradation
discoloration
Discolouration
Electron irradiation
electrons
Energy
Exact sciences and technology
Forms of application and semi-finished materials
irradiation
Natural energy
Panels
Photovoltaic cells
Photovoltaic conversion
Polymer industry, paints, wood
Polysiloxanes
Siloxanes
Solar cells
Solar cells. Photoelectrochemical cells
solar collectors
Solar energy
Space applications
Space environment
Technology of polymers
temperature
ultraviolet radiation
UV degradation
title Space environmental testing of flexible coverglass alternatives based on siloxanes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T09%3A17%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Space%20environmental%20testing%20of%20flexible%20coverglass%20alternatives%20based%20on%20siloxanes&rft.jtitle=Polymer%20degradation%20and%20stability&rft.au=Smeenk,%20N.J.&rft.date=2013-12-01&rft.volume=98&rft.issue=12&rft.spage=2503&rft.epage=2511&rft.pages=2503-2511&rft.issn=0141-3910&rft.eissn=1873-2321&rft.coden=PDSTDW&rft_id=info:doi/10.1016/j.polymdegradstab.2013.09.008&rft_dat=%3Cproquest_cross%3E1531021392%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1531021392&rft_id=info:pmid/&rft_els_id=S0141391013002966&rfr_iscdi=true