Space environmental testing of flexible coverglass alternatives based on siloxanes
With the development of thin-film, high-efficient III–V solar cells using the epitaxial lift-off technique, flexible solar panels for space applications can be designed. Besides new deployment options, this also reduces the mass and thus launch costs of a satellite. One requirement for such a flexib...
Gespeichert in:
Veröffentlicht in: | Polymer degradation and stability 2013-12, Vol.98 (12), p.2503-2511 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2511 |
---|---|
container_issue | 12 |
container_start_page | 2503 |
container_title | Polymer degradation and stability |
container_volume | 98 |
creator | Smeenk, N.J. Mooney, C. Feenstra, J. Mulder, P. Rohr, T. Semprimoschnig, C.O.A. Vlieg, E. Schermer, J.J. |
description | With the development of thin-film, high-efficient III–V solar cells using the epitaxial lift-off technique, flexible solar panels for space applications can be designed. Besides new deployment options, this also reduces the mass and thus launch costs of a satellite. One requirement for such a flexible panel configuration is the replacement of the brittle coverglass, which shields the solar cells from the harsh space environment, by a flexible alternative. In this work we have tested several compositions of a polysiloxane candidate material for a flexible shielding layer by exposing them to high energy UV and electron radiation at elevated temperatures. It was found that irradiation by electrons with a fluence corresponding to 15 years in space produces little degradation. UV radiation, on the other hand, has a more pronounced impact on the material properties, causing a discolouration of the transparent material and for some compositions even cracking of the samples. |
doi_str_mv | 10.1016/j.polymdegradstab.2013.09.008 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1531021392</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0141391013002966</els_id><sourcerecordid>1531021392</sourcerecordid><originalsourceid>FETCH-LOGICAL-c516t-3b320fcde4d3319bd69838f37f1d1ab034115f14d802339671ea68573203762b3</originalsourceid><addsrcrecordid>eNqNkLFqHDEQhkVIIBfHz2A1hjS70Ui72lWRIpjEDhgCcVwLrTQ6dOiki7Q-7LePzJkUrjLNNN_88_MRcgmsBwby864_5Pi0d7gtxtXVLD1nIHqmesbmN2QD8yQ6Lji8JRsGA3RCAXtPPtS6Y22GETbk193BWKSYjqHktMe0mkhXrGtIW5o99REfwxKR2nzEso2mVmriiiWZNRyx0sVUdDQnWkPMjyZh_UjeeRMrnr_sM3L__dvvq5vu9uf1j6uvt50dQa6dWARn3jocnBCgFifVLGYvJg8OzMLEADB6GNzMuBBKToBGzuPUrsQk-SLOyKdT7qHkPw-tst6HajHGViI_VA2jAMZBKN7QLyfUllxrQa8PJexNedLA9LNLvdOvXOpnl5op3Vy2-8uXV6ZaE30xyYb6L4TPTE5qUo27OHHeZG22pTH3dy1INt2TkHJoxPWJwGbmGLDoagMmiy4UtKt2Ofxnp797UJ1G</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1531021392</pqid></control><display><type>article</type><title>Space environmental testing of flexible coverglass alternatives based on siloxanes</title><source>Access via ScienceDirect (Elsevier)</source><creator>Smeenk, N.J. ; Mooney, C. ; Feenstra, J. ; Mulder, P. ; Rohr, T. ; Semprimoschnig, C.O.A. ; Vlieg, E. ; Schermer, J.J.</creator><creatorcontrib>Smeenk, N.J. ; Mooney, C. ; Feenstra, J. ; Mulder, P. ; Rohr, T. ; Semprimoschnig, C.O.A. ; Vlieg, E. ; Schermer, J.J.</creatorcontrib><description>With the development of thin-film, high-efficient III–V solar cells using the epitaxial lift-off technique, flexible solar panels for space applications can be designed. Besides new deployment options, this also reduces the mass and thus launch costs of a satellite. One requirement for such a flexible panel configuration is the replacement of the brittle coverglass, which shields the solar cells from the harsh space environment, by a flexible alternative. In this work we have tested several compositions of a polysiloxane candidate material for a flexible shielding layer by exposing them to high energy UV and electron radiation at elevated temperatures. It was found that irradiation by electrons with a fluence corresponding to 15 years in space produces little degradation. UV radiation, on the other hand, has a more pronounced impact on the material properties, causing a discolouration of the transparent material and for some compositions even cracking of the samples.</description><identifier>ISSN: 0141-3910</identifier><identifier>EISSN: 1873-2321</identifier><identifier>DOI: 10.1016/j.polymdegradstab.2013.09.008</identifier><identifier>CODEN: PDSTDW</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Composites ; cracking ; Degradation ; discoloration ; Discolouration ; Electron irradiation ; electrons ; Energy ; Exact sciences and technology ; Forms of application and semi-finished materials ; irradiation ; Natural energy ; Panels ; Photovoltaic cells ; Photovoltaic conversion ; Polymer industry, paints, wood ; Polysiloxanes ; Siloxanes ; Solar cells ; Solar cells. Photoelectrochemical cells ; solar collectors ; Solar energy ; Space applications ; Space environment ; Technology of polymers ; temperature ; ultraviolet radiation ; UV degradation</subject><ispartof>Polymer degradation and stability, 2013-12, Vol.98 (12), p.2503-2511</ispartof><rights>2013 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c516t-3b320fcde4d3319bd69838f37f1d1ab034115f14d802339671ea68573203762b3</citedby><cites>FETCH-LOGICAL-c516t-3b320fcde4d3319bd69838f37f1d1ab034115f14d802339671ea68573203762b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.polymdegradstab.2013.09.008$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28067979$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Smeenk, N.J.</creatorcontrib><creatorcontrib>Mooney, C.</creatorcontrib><creatorcontrib>Feenstra, J.</creatorcontrib><creatorcontrib>Mulder, P.</creatorcontrib><creatorcontrib>Rohr, T.</creatorcontrib><creatorcontrib>Semprimoschnig, C.O.A.</creatorcontrib><creatorcontrib>Vlieg, E.</creatorcontrib><creatorcontrib>Schermer, J.J.</creatorcontrib><title>Space environmental testing of flexible coverglass alternatives based on siloxanes</title><title>Polymer degradation and stability</title><description>With the development of thin-film, high-efficient III–V solar cells using the epitaxial lift-off technique, flexible solar panels for space applications can be designed. Besides new deployment options, this also reduces the mass and thus launch costs of a satellite. One requirement for such a flexible panel configuration is the replacement of the brittle coverglass, which shields the solar cells from the harsh space environment, by a flexible alternative. In this work we have tested several compositions of a polysiloxane candidate material for a flexible shielding layer by exposing them to high energy UV and electron radiation at elevated temperatures. It was found that irradiation by electrons with a fluence corresponding to 15 years in space produces little degradation. UV radiation, on the other hand, has a more pronounced impact on the material properties, causing a discolouration of the transparent material and for some compositions even cracking of the samples.</description><subject>Applied sciences</subject><subject>Composites</subject><subject>cracking</subject><subject>Degradation</subject><subject>discoloration</subject><subject>Discolouration</subject><subject>Electron irradiation</subject><subject>electrons</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Forms of application and semi-finished materials</subject><subject>irradiation</subject><subject>Natural energy</subject><subject>Panels</subject><subject>Photovoltaic cells</subject><subject>Photovoltaic conversion</subject><subject>Polymer industry, paints, wood</subject><subject>Polysiloxanes</subject><subject>Siloxanes</subject><subject>Solar cells</subject><subject>Solar cells. Photoelectrochemical cells</subject><subject>solar collectors</subject><subject>Solar energy</subject><subject>Space applications</subject><subject>Space environment</subject><subject>Technology of polymers</subject><subject>temperature</subject><subject>ultraviolet radiation</subject><subject>UV degradation</subject><issn>0141-3910</issn><issn>1873-2321</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNkLFqHDEQhkVIIBfHz2A1hjS70Ui72lWRIpjEDhgCcVwLrTQ6dOiki7Q-7LePzJkUrjLNNN_88_MRcgmsBwby864_5Pi0d7gtxtXVLD1nIHqmesbmN2QD8yQ6Lji8JRsGA3RCAXtPPtS6Y22GETbk193BWKSYjqHktMe0mkhXrGtIW5o99REfwxKR2nzEso2mVmriiiWZNRyx0sVUdDQnWkPMjyZh_UjeeRMrnr_sM3L__dvvq5vu9uf1j6uvt50dQa6dWARn3jocnBCgFifVLGYvJg8OzMLEADB6GNzMuBBKToBGzuPUrsQk-SLOyKdT7qHkPw-tst6HajHGViI_VA2jAMZBKN7QLyfUllxrQa8PJexNedLA9LNLvdOvXOpnl5op3Vy2-8uXV6ZaE30xyYb6L4TPTE5qUo27OHHeZG22pTH3dy1INt2TkHJoxPWJwGbmGLDoagMmiy4UtKt2Ofxnp797UJ1G</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Smeenk, N.J.</creator><creator>Mooney, C.</creator><creator>Feenstra, J.</creator><creator>Mulder, P.</creator><creator>Rohr, T.</creator><creator>Semprimoschnig, C.O.A.</creator><creator>Vlieg, E.</creator><creator>Schermer, J.J.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20131201</creationdate><title>Space environmental testing of flexible coverglass alternatives based on siloxanes</title><author>Smeenk, N.J. ; Mooney, C. ; Feenstra, J. ; Mulder, P. ; Rohr, T. ; Semprimoschnig, C.O.A. ; Vlieg, E. ; Schermer, J.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c516t-3b320fcde4d3319bd69838f37f1d1ab034115f14d802339671ea68573203762b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Composites</topic><topic>cracking</topic><topic>Degradation</topic><topic>discoloration</topic><topic>Discolouration</topic><topic>Electron irradiation</topic><topic>electrons</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Forms of application and semi-finished materials</topic><topic>irradiation</topic><topic>Natural energy</topic><topic>Panels</topic><topic>Photovoltaic cells</topic><topic>Photovoltaic conversion</topic><topic>Polymer industry, paints, wood</topic><topic>Polysiloxanes</topic><topic>Siloxanes</topic><topic>Solar cells</topic><topic>Solar cells. Photoelectrochemical cells</topic><topic>solar collectors</topic><topic>Solar energy</topic><topic>Space applications</topic><topic>Space environment</topic><topic>Technology of polymers</topic><topic>temperature</topic><topic>ultraviolet radiation</topic><topic>UV degradation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smeenk, N.J.</creatorcontrib><creatorcontrib>Mooney, C.</creatorcontrib><creatorcontrib>Feenstra, J.</creatorcontrib><creatorcontrib>Mulder, P.</creatorcontrib><creatorcontrib>Rohr, T.</creatorcontrib><creatorcontrib>Semprimoschnig, C.O.A.</creatorcontrib><creatorcontrib>Vlieg, E.</creatorcontrib><creatorcontrib>Schermer, J.J.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Polymer degradation and stability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smeenk, N.J.</au><au>Mooney, C.</au><au>Feenstra, J.</au><au>Mulder, P.</au><au>Rohr, T.</au><au>Semprimoschnig, C.O.A.</au><au>Vlieg, E.</au><au>Schermer, J.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Space environmental testing of flexible coverglass alternatives based on siloxanes</atitle><jtitle>Polymer degradation and stability</jtitle><date>2013-12-01</date><risdate>2013</risdate><volume>98</volume><issue>12</issue><spage>2503</spage><epage>2511</epage><pages>2503-2511</pages><issn>0141-3910</issn><eissn>1873-2321</eissn><coden>PDSTDW</coden><abstract>With the development of thin-film, high-efficient III–V solar cells using the epitaxial lift-off technique, flexible solar panels for space applications can be designed. Besides new deployment options, this also reduces the mass and thus launch costs of a satellite. One requirement for such a flexible panel configuration is the replacement of the brittle coverglass, which shields the solar cells from the harsh space environment, by a flexible alternative. In this work we have tested several compositions of a polysiloxane candidate material for a flexible shielding layer by exposing them to high energy UV and electron radiation at elevated temperatures. It was found that irradiation by electrons with a fluence corresponding to 15 years in space produces little degradation. UV radiation, on the other hand, has a more pronounced impact on the material properties, causing a discolouration of the transparent material and for some compositions even cracking of the samples.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.polymdegradstab.2013.09.008</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0141-3910 |
ispartof | Polymer degradation and stability, 2013-12, Vol.98 (12), p.2503-2511 |
issn | 0141-3910 1873-2321 |
language | eng |
recordid | cdi_proquest_miscellaneous_1531021392 |
source | Access via ScienceDirect (Elsevier) |
subjects | Applied sciences Composites cracking Degradation discoloration Discolouration Electron irradiation electrons Energy Exact sciences and technology Forms of application and semi-finished materials irradiation Natural energy Panels Photovoltaic cells Photovoltaic conversion Polymer industry, paints, wood Polysiloxanes Siloxanes Solar cells Solar cells. Photoelectrochemical cells solar collectors Solar energy Space applications Space environment Technology of polymers temperature ultraviolet radiation UV degradation |
title | Space environmental testing of flexible coverglass alternatives based on siloxanes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T09%3A17%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Space%20environmental%20testing%20of%20flexible%20coverglass%20alternatives%20based%20on%20siloxanes&rft.jtitle=Polymer%20degradation%20and%20stability&rft.au=Smeenk,%20N.J.&rft.date=2013-12-01&rft.volume=98&rft.issue=12&rft.spage=2503&rft.epage=2511&rft.pages=2503-2511&rft.issn=0141-3910&rft.eissn=1873-2321&rft.coden=PDSTDW&rft_id=info:doi/10.1016/j.polymdegradstab.2013.09.008&rft_dat=%3Cproquest_cross%3E1531021392%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1531021392&rft_id=info:pmid/&rft_els_id=S0141391013002966&rfr_iscdi=true |