A quantum-inspired artificial immune system for the multiobjective 0–1 knapsack problem

For solving the multiobjective 0–1 knapsack problem (MKP), a novel quantum-inspired artificial immune system (MOQAIS) is presented. The proposed algorithm is composed of a quantum-inspired artificial immune algorithm (QAIS) and an artificial immune system (BAIS). On one hand, QAIS, based on Q-bit re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics and computation 2014-03, Vol.230, p.120-137
Hauptverfasser: Gao, Jiaquan, He, Guixia, Liang, Ronghua, Feng, Zhilin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 137
container_issue
container_start_page 120
container_title Applied mathematics and computation
container_volume 230
creator Gao, Jiaquan
He, Guixia
Liang, Ronghua
Feng, Zhilin
description For solving the multiobjective 0–1 knapsack problem (MKP), a novel quantum-inspired artificial immune system (MOQAIS) is presented. The proposed algorithm is composed of a quantum-inspired artificial immune algorithm (QAIS) and an artificial immune system (BAIS). On one hand, QAIS, based on Q-bit representation, is responsible for exploration of the search space by using clone, mutation with a chaos-based rotation gate, update operation of Q-gate. On the other hand, BAIS, based on binary representation, is applied for exploitation of the search space with clone, a reverse mutation. Most importantly, two diversity schemes, suppression algorithm and truncation algorithm with similar individuals (TASI), are employed to preserve the diversity of the population, and a new selection scheme based on TASI is proposed to create the new population. Simulation results on MKP with 12 different test data show that MOQAIS is able to find a much better spread of solutions and has better convergence compared to a quantum-inspired multiobjective evolutionary algorithm (QMEA), a hybrid quantum genetic algorithm (HQGA), a weight-based multiobjective artificial immune system (WBMOAIS), an elitist non-dominated sorting genetic algorithm (NSGA-II) and an immune clonal algorithm only for MKP (ICMOA).
doi_str_mv 10.1016/j.amc.2013.12.088
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1531020023</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0096300313013787</els_id><sourcerecordid>1531020023</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-82867db90f23a19bebf3ebe17e0262f04109470a6947447aa7942075511c34883</originalsourceid><addsrcrecordid>eNp9kL1OwzAUhS0EEqXwAGweWRLutdP8iAlV_EmVWGBgshz3RriNk2I7lbrxDrwhT0JKmVnOXc45V-dj7BIhRcD8epVqZ1IBKFMUKZTlEZtgWchklmfVMZsAVHkiAeQpOwthBQBFjtmEvd3yj0F3cXCJ7cLGelpy7aNtrLG65da5oSMediGS403veXwn7oY22r5ekYl2Sxy-P7-Qrzu9Cdqs-cb3dUvunJ00ug108Xen7PX-7mX-mCyeH57mt4vESAkxKUWZF8u6gkZIjVVNdSOpJiwIRC4ayBCqrACdj5plhdZFlQkoZjNEI7OylFN2degd_34MFKJyNhhqW91RPwSFM4kgAIQcrXiwGt-H4KlRG2-d9juFoPYY1UqNGNUeo0Kh4Lf-5pChccPWklfBWOoMLUdWJqplb_9J_wDzDXrN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1531020023</pqid></control><display><type>article</type><title>A quantum-inspired artificial immune system for the multiobjective 0–1 knapsack problem</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Gao, Jiaquan ; He, Guixia ; Liang, Ronghua ; Feng, Zhilin</creator><creatorcontrib>Gao, Jiaquan ; He, Guixia ; Liang, Ronghua ; Feng, Zhilin</creatorcontrib><description>For solving the multiobjective 0–1 knapsack problem (MKP), a novel quantum-inspired artificial immune system (MOQAIS) is presented. The proposed algorithm is composed of a quantum-inspired artificial immune algorithm (QAIS) and an artificial immune system (BAIS). On one hand, QAIS, based on Q-bit representation, is responsible for exploration of the search space by using clone, mutation with a chaos-based rotation gate, update operation of Q-gate. On the other hand, BAIS, based on binary representation, is applied for exploitation of the search space with clone, a reverse mutation. Most importantly, two diversity schemes, suppression algorithm and truncation algorithm with similar individuals (TASI), are employed to preserve the diversity of the population, and a new selection scheme based on TASI is proposed to create the new population. Simulation results on MKP with 12 different test data show that MOQAIS is able to find a much better spread of solutions and has better convergence compared to a quantum-inspired multiobjective evolutionary algorithm (QMEA), a hybrid quantum genetic algorithm (HQGA), a weight-based multiobjective artificial immune system (WBMOAIS), an elitist non-dominated sorting genetic algorithm (NSGA-II) and an immune clonal algorithm only for MKP (ICMOA).</description><identifier>ISSN: 0096-3003</identifier><identifier>EISSN: 1873-5649</identifier><identifier>DOI: 10.1016/j.amc.2013.12.088</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Algorithms ; Artificial immune system ; Artificial intelligence ; Genetic algorithms ; Knapsack problem ; Mathematical models ; Mutations ; Quantum computing ; Representations ; Searching</subject><ispartof>Applied mathematics and computation, 2014-03, Vol.230, p.120-137</ispartof><rights>2013 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-82867db90f23a19bebf3ebe17e0262f04109470a6947447aa7942075511c34883</citedby><cites>FETCH-LOGICAL-c330t-82867db90f23a19bebf3ebe17e0262f04109470a6947447aa7942075511c34883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.amc.2013.12.088$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids></links><search><creatorcontrib>Gao, Jiaquan</creatorcontrib><creatorcontrib>He, Guixia</creatorcontrib><creatorcontrib>Liang, Ronghua</creatorcontrib><creatorcontrib>Feng, Zhilin</creatorcontrib><title>A quantum-inspired artificial immune system for the multiobjective 0–1 knapsack problem</title><title>Applied mathematics and computation</title><description>For solving the multiobjective 0–1 knapsack problem (MKP), a novel quantum-inspired artificial immune system (MOQAIS) is presented. The proposed algorithm is composed of a quantum-inspired artificial immune algorithm (QAIS) and an artificial immune system (BAIS). On one hand, QAIS, based on Q-bit representation, is responsible for exploration of the search space by using clone, mutation with a chaos-based rotation gate, update operation of Q-gate. On the other hand, BAIS, based on binary representation, is applied for exploitation of the search space with clone, a reverse mutation. Most importantly, two diversity schemes, suppression algorithm and truncation algorithm with similar individuals (TASI), are employed to preserve the diversity of the population, and a new selection scheme based on TASI is proposed to create the new population. Simulation results on MKP with 12 different test data show that MOQAIS is able to find a much better spread of solutions and has better convergence compared to a quantum-inspired multiobjective evolutionary algorithm (QMEA), a hybrid quantum genetic algorithm (HQGA), a weight-based multiobjective artificial immune system (WBMOAIS), an elitist non-dominated sorting genetic algorithm (NSGA-II) and an immune clonal algorithm only for MKP (ICMOA).</description><subject>Algorithms</subject><subject>Artificial immune system</subject><subject>Artificial intelligence</subject><subject>Genetic algorithms</subject><subject>Knapsack problem</subject><subject>Mathematical models</subject><subject>Mutations</subject><subject>Quantum computing</subject><subject>Representations</subject><subject>Searching</subject><issn>0096-3003</issn><issn>1873-5649</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kL1OwzAUhS0EEqXwAGweWRLutdP8iAlV_EmVWGBgshz3RriNk2I7lbrxDrwhT0JKmVnOXc45V-dj7BIhRcD8epVqZ1IBKFMUKZTlEZtgWchklmfVMZsAVHkiAeQpOwthBQBFjtmEvd3yj0F3cXCJ7cLGelpy7aNtrLG65da5oSMediGS403veXwn7oY22r5ekYl2Sxy-P7-Qrzu9Cdqs-cb3dUvunJ00ug108Xen7PX-7mX-mCyeH57mt4vESAkxKUWZF8u6gkZIjVVNdSOpJiwIRC4ayBCqrACdj5plhdZFlQkoZjNEI7OylFN2degd_34MFKJyNhhqW91RPwSFM4kgAIQcrXiwGt-H4KlRG2-d9juFoPYY1UqNGNUeo0Kh4Lf-5pChccPWklfBWOoMLUdWJqplb_9J_wDzDXrN</recordid><startdate>20140301</startdate><enddate>20140301</enddate><creator>Gao, Jiaquan</creator><creator>He, Guixia</creator><creator>Liang, Ronghua</creator><creator>Feng, Zhilin</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140301</creationdate><title>A quantum-inspired artificial immune system for the multiobjective 0–1 knapsack problem</title><author>Gao, Jiaquan ; He, Guixia ; Liang, Ronghua ; Feng, Zhilin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-82867db90f23a19bebf3ebe17e0262f04109470a6947447aa7942075511c34883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Artificial immune system</topic><topic>Artificial intelligence</topic><topic>Genetic algorithms</topic><topic>Knapsack problem</topic><topic>Mathematical models</topic><topic>Mutations</topic><topic>Quantum computing</topic><topic>Representations</topic><topic>Searching</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Jiaquan</creatorcontrib><creatorcontrib>He, Guixia</creatorcontrib><creatorcontrib>Liang, Ronghua</creatorcontrib><creatorcontrib>Feng, Zhilin</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied mathematics and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Jiaquan</au><au>He, Guixia</au><au>Liang, Ronghua</au><au>Feng, Zhilin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A quantum-inspired artificial immune system for the multiobjective 0–1 knapsack problem</atitle><jtitle>Applied mathematics and computation</jtitle><date>2014-03-01</date><risdate>2014</risdate><volume>230</volume><spage>120</spage><epage>137</epage><pages>120-137</pages><issn>0096-3003</issn><eissn>1873-5649</eissn><abstract>For solving the multiobjective 0–1 knapsack problem (MKP), a novel quantum-inspired artificial immune system (MOQAIS) is presented. The proposed algorithm is composed of a quantum-inspired artificial immune algorithm (QAIS) and an artificial immune system (BAIS). On one hand, QAIS, based on Q-bit representation, is responsible for exploration of the search space by using clone, mutation with a chaos-based rotation gate, update operation of Q-gate. On the other hand, BAIS, based on binary representation, is applied for exploitation of the search space with clone, a reverse mutation. Most importantly, two diversity schemes, suppression algorithm and truncation algorithm with similar individuals (TASI), are employed to preserve the diversity of the population, and a new selection scheme based on TASI is proposed to create the new population. Simulation results on MKP with 12 different test data show that MOQAIS is able to find a much better spread of solutions and has better convergence compared to a quantum-inspired multiobjective evolutionary algorithm (QMEA), a hybrid quantum genetic algorithm (HQGA), a weight-based multiobjective artificial immune system (WBMOAIS), an elitist non-dominated sorting genetic algorithm (NSGA-II) and an immune clonal algorithm only for MKP (ICMOA).</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.amc.2013.12.088</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0096-3003
ispartof Applied mathematics and computation, 2014-03, Vol.230, p.120-137
issn 0096-3003
1873-5649
language eng
recordid cdi_proquest_miscellaneous_1531020023
source Elsevier ScienceDirect Journals Complete
subjects Algorithms
Artificial immune system
Artificial intelligence
Genetic algorithms
Knapsack problem
Mathematical models
Mutations
Quantum computing
Representations
Searching
title A quantum-inspired artificial immune system for the multiobjective 0–1 knapsack problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T07%3A33%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20quantum-inspired%20artificial%20immune%20system%20for%20the%20multiobjective%200%E2%80%931%20knapsack%20problem&rft.jtitle=Applied%20mathematics%20and%20computation&rft.au=Gao,%20Jiaquan&rft.date=2014-03-01&rft.volume=230&rft.spage=120&rft.epage=137&rft.pages=120-137&rft.issn=0096-3003&rft.eissn=1873-5649&rft_id=info:doi/10.1016/j.amc.2013.12.088&rft_dat=%3Cproquest_cross%3E1531020023%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1531020023&rft_id=info:pmid/&rft_els_id=S0096300313013787&rfr_iscdi=true