Photorearrangement of acyclic nitrones: A luminescent study

Dipolar acyclic nitrones (N1, N2 and N3) exhibit solvatochromism along with some unusual photophysical behavior like excitation wavelength dependent emission, non-mirror symmetric excitation–emission spectra etc. It was observed that at the respective emission maxima, the fluorescence intensity chan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of luminescence 2014-01, Vol.145, p.525-530
Hauptverfasser: Chaudhuri, Tandrima, Das, Tapas Kr, Salampuria, Sneha, Pal, Chiranjit, Banerjee, Manas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 530
container_issue
container_start_page 525
container_title Journal of luminescence
container_volume 145
creator Chaudhuri, Tandrima
Das, Tapas Kr
Salampuria, Sneha
Pal, Chiranjit
Banerjee, Manas
description Dipolar acyclic nitrones (N1, N2 and N3) exhibit solvatochromism along with some unusual photophysical behavior like excitation wavelength dependent emission, non-mirror symmetric excitation–emission spectra etc. It was observed that at the respective emission maxima, the fluorescence intensity changed with time following a first order kinetics for all the three nitrones in non-polar toluene, intermediate THF as well as in polar acetonitrile, indicating a time dependent deactivation of excited state. The experimentally measured rate constants also depend on the nature of solvent used. No such corresponding behavior was observed in steady state absorption study. Possibly it is the first luminescence study in this aspect. This could be intelligible considering the photorearrangement of these acyclic nitrones. The ground state energy barriers and free energy of activation of the rearrangement have been calculated using density functional theory (DFT) for the three nitrones in gas phase and in dielectric medium as well. Theoretically calculated barrier energies and free energy can satisfactorily explain the experimental trend of 1st order rate constant. •Acyclic nitrones are solvatochromic and undergo photorearrangement to form amide.•Excited state decay follows a 1st order kinetics.•The rates of this rearrangement depend on the solvent used.•The rates of this rearrangement depend on the structure of nitrone itself.•DFT calculations of transition barrier and free energy of activation satisfactorily justify the experimental findings.
doi_str_mv 10.1016/j.jlumin.2013.08.008
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1531018463</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022231313004857</els_id><sourcerecordid>1531018463</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-2b8e50648abb870bbbc918261e4262cdc2c14bd290a0a568c1e22646c54079053</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-Aw89emmdfDRNFYRl8QsW9KDnkKazmtI2a9IK--_tWs-e5vK878w8hFxSyChQed1kTTt2rs8YUJ6BygDUEVlQVbC0UIofkwUAYynjlJ-SsxgbAOClKhfk9vXTDz6gCcH0H9hhPyR-mxi7t62zSe-G4HuMN8kq-V2B0R6QOIz1_pycbE0b8eJvLsn7w_3b-indvDw-r1eb1ArIh5RVCnOQQpmqUgVUVWVLqpikKJhktrbMUlHVrAQDJpfKUmRMCmlzAUUJOV-Sq7l3F_zXiHHQnZvOaFvTox-jpjmfNCgh-YSKGbXBxxhwq3fBdSbsNQV9cKUbPbvSB1calJ5cTbG7OYbTG98Og47WYW-xdgHtoGvv_i_4AYCSc9I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1531018463</pqid></control><display><type>article</type><title>Photorearrangement of acyclic nitrones: A luminescent study</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Chaudhuri, Tandrima ; Das, Tapas Kr ; Salampuria, Sneha ; Pal, Chiranjit ; Banerjee, Manas</creator><creatorcontrib>Chaudhuri, Tandrima ; Das, Tapas Kr ; Salampuria, Sneha ; Pal, Chiranjit ; Banerjee, Manas</creatorcontrib><description>Dipolar acyclic nitrones (N1, N2 and N3) exhibit solvatochromism along with some unusual photophysical behavior like excitation wavelength dependent emission, non-mirror symmetric excitation–emission spectra etc. It was observed that at the respective emission maxima, the fluorescence intensity changed with time following a first order kinetics for all the three nitrones in non-polar toluene, intermediate THF as well as in polar acetonitrile, indicating a time dependent deactivation of excited state. The experimentally measured rate constants also depend on the nature of solvent used. No such corresponding behavior was observed in steady state absorption study. Possibly it is the first luminescence study in this aspect. This could be intelligible considering the photorearrangement of these acyclic nitrones. The ground state energy barriers and free energy of activation of the rearrangement have been calculated using density functional theory (DFT) for the three nitrones in gas phase and in dielectric medium as well. Theoretically calculated barrier energies and free energy can satisfactorily explain the experimental trend of 1st order rate constant. •Acyclic nitrones are solvatochromic and undergo photorearrangement to form amide.•Excited state decay follows a 1st order kinetics.•The rates of this rearrangement depend on the solvent used.•The rates of this rearrangement depend on the structure of nitrone itself.•DFT calculations of transition barrier and free energy of activation satisfactorily justify the experimental findings.</description><identifier>ISSN: 0022-2313</identifier><identifier>EISSN: 1872-7883</identifier><identifier>DOI: 10.1016/j.jlumin.2013.08.008</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Emission ; Excitation ; Excitation spectra ; Luminescence ; Spectral emissivity ; Steady state ; Toluene ; Wavelengths</subject><ispartof>Journal of luminescence, 2014-01, Vol.145, p.525-530</ispartof><rights>2013 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-2b8e50648abb870bbbc918261e4262cdc2c14bd290a0a568c1e22646c54079053</citedby><cites>FETCH-LOGICAL-c405t-2b8e50648abb870bbbc918261e4262cdc2c14bd290a0a568c1e22646c54079053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jlumin.2013.08.008$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3549,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Chaudhuri, Tandrima</creatorcontrib><creatorcontrib>Das, Tapas Kr</creatorcontrib><creatorcontrib>Salampuria, Sneha</creatorcontrib><creatorcontrib>Pal, Chiranjit</creatorcontrib><creatorcontrib>Banerjee, Manas</creatorcontrib><title>Photorearrangement of acyclic nitrones: A luminescent study</title><title>Journal of luminescence</title><description>Dipolar acyclic nitrones (N1, N2 and N3) exhibit solvatochromism along with some unusual photophysical behavior like excitation wavelength dependent emission, non-mirror symmetric excitation–emission spectra etc. It was observed that at the respective emission maxima, the fluorescence intensity changed with time following a first order kinetics for all the three nitrones in non-polar toluene, intermediate THF as well as in polar acetonitrile, indicating a time dependent deactivation of excited state. The experimentally measured rate constants also depend on the nature of solvent used. No such corresponding behavior was observed in steady state absorption study. Possibly it is the first luminescence study in this aspect. This could be intelligible considering the photorearrangement of these acyclic nitrones. The ground state energy barriers and free energy of activation of the rearrangement have been calculated using density functional theory (DFT) for the three nitrones in gas phase and in dielectric medium as well. Theoretically calculated barrier energies and free energy can satisfactorily explain the experimental trend of 1st order rate constant. •Acyclic nitrones are solvatochromic and undergo photorearrangement to form amide.•Excited state decay follows a 1st order kinetics.•The rates of this rearrangement depend on the solvent used.•The rates of this rearrangement depend on the structure of nitrone itself.•DFT calculations of transition barrier and free energy of activation satisfactorily justify the experimental findings.</description><subject>Emission</subject><subject>Excitation</subject><subject>Excitation spectra</subject><subject>Luminescence</subject><subject>Spectral emissivity</subject><subject>Steady state</subject><subject>Toluene</subject><subject>Wavelengths</subject><issn>0022-2313</issn><issn>1872-7883</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-Aw89emmdfDRNFYRl8QsW9KDnkKazmtI2a9IK--_tWs-e5vK878w8hFxSyChQed1kTTt2rs8YUJ6BygDUEVlQVbC0UIofkwUAYynjlJ-SsxgbAOClKhfk9vXTDz6gCcH0H9hhPyR-mxi7t62zSe-G4HuMN8kq-V2B0R6QOIz1_pycbE0b8eJvLsn7w_3b-indvDw-r1eb1ArIh5RVCnOQQpmqUgVUVWVLqpikKJhktrbMUlHVrAQDJpfKUmRMCmlzAUUJOV-Sq7l3F_zXiHHQnZvOaFvTox-jpjmfNCgh-YSKGbXBxxhwq3fBdSbsNQV9cKUbPbvSB1calJ5cTbG7OYbTG98Og47WYW-xdgHtoGvv_i_4AYCSc9I</recordid><startdate>201401</startdate><enddate>201401</enddate><creator>Chaudhuri, Tandrima</creator><creator>Das, Tapas Kr</creator><creator>Salampuria, Sneha</creator><creator>Pal, Chiranjit</creator><creator>Banerjee, Manas</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>201401</creationdate><title>Photorearrangement of acyclic nitrones: A luminescent study</title><author>Chaudhuri, Tandrima ; Das, Tapas Kr ; Salampuria, Sneha ; Pal, Chiranjit ; Banerjee, Manas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-2b8e50648abb870bbbc918261e4262cdc2c14bd290a0a568c1e22646c54079053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Emission</topic><topic>Excitation</topic><topic>Excitation spectra</topic><topic>Luminescence</topic><topic>Spectral emissivity</topic><topic>Steady state</topic><topic>Toluene</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chaudhuri, Tandrima</creatorcontrib><creatorcontrib>Das, Tapas Kr</creatorcontrib><creatorcontrib>Salampuria, Sneha</creatorcontrib><creatorcontrib>Pal, Chiranjit</creatorcontrib><creatorcontrib>Banerjee, Manas</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of luminescence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chaudhuri, Tandrima</au><au>Das, Tapas Kr</au><au>Salampuria, Sneha</au><au>Pal, Chiranjit</au><au>Banerjee, Manas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photorearrangement of acyclic nitrones: A luminescent study</atitle><jtitle>Journal of luminescence</jtitle><date>2014-01</date><risdate>2014</risdate><volume>145</volume><spage>525</spage><epage>530</epage><pages>525-530</pages><issn>0022-2313</issn><eissn>1872-7883</eissn><abstract>Dipolar acyclic nitrones (N1, N2 and N3) exhibit solvatochromism along with some unusual photophysical behavior like excitation wavelength dependent emission, non-mirror symmetric excitation–emission spectra etc. It was observed that at the respective emission maxima, the fluorescence intensity changed with time following a first order kinetics for all the three nitrones in non-polar toluene, intermediate THF as well as in polar acetonitrile, indicating a time dependent deactivation of excited state. The experimentally measured rate constants also depend on the nature of solvent used. No such corresponding behavior was observed in steady state absorption study. Possibly it is the first luminescence study in this aspect. This could be intelligible considering the photorearrangement of these acyclic nitrones. The ground state energy barriers and free energy of activation of the rearrangement have been calculated using density functional theory (DFT) for the three nitrones in gas phase and in dielectric medium as well. Theoretically calculated barrier energies and free energy can satisfactorily explain the experimental trend of 1st order rate constant. •Acyclic nitrones are solvatochromic and undergo photorearrangement to form amide.•Excited state decay follows a 1st order kinetics.•The rates of this rearrangement depend on the solvent used.•The rates of this rearrangement depend on the structure of nitrone itself.•DFT calculations of transition barrier and free energy of activation satisfactorily justify the experimental findings.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.jlumin.2013.08.008</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2313
ispartof Journal of luminescence, 2014-01, Vol.145, p.525-530
issn 0022-2313
1872-7883
language eng
recordid cdi_proquest_miscellaneous_1531018463
source ScienceDirect Journals (5 years ago - present)
subjects Emission
Excitation
Excitation spectra
Luminescence
Spectral emissivity
Steady state
Toluene
Wavelengths
title Photorearrangement of acyclic nitrones: A luminescent study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T14%3A42%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photorearrangement%20of%20acyclic%20nitrones:%20A%20luminescent%20study&rft.jtitle=Journal%20of%20luminescence&rft.au=Chaudhuri,%20Tandrima&rft.date=2014-01&rft.volume=145&rft.spage=525&rft.epage=530&rft.pages=525-530&rft.issn=0022-2313&rft.eissn=1872-7883&rft_id=info:doi/10.1016/j.jlumin.2013.08.008&rft_dat=%3Cproquest_cross%3E1531018463%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1531018463&rft_id=info:pmid/&rft_els_id=S0022231313004857&rfr_iscdi=true