Heat protection by different phase change materials
Different types of phase change materials (PCMs) were compared for the use in heat protective clothing. For that purpose, flexible blister foils containing the PCMs were prepared. The samples were irradiated with a heat flux of 1.5 kW/m2 in order to simulate a typical industrial setting like working...
Gespeichert in:
Veröffentlicht in: | Applied thermal engineering 2013-05, Vol.54 (2), p.359-364 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 364 |
---|---|
container_issue | 2 |
container_start_page | 359 |
container_title | Applied thermal engineering |
container_volume | 54 |
creator | Bühler, M. Popa, A.M. Scherer, L.J. Lehmeier, F.K.S. Rossi, R.M. |
description | Different types of phase change materials (PCMs) were compared for the use in heat protective clothing. For that purpose, flexible blister foils containing the PCMs were prepared. The samples were irradiated with a heat flux of 1.5 kW/m2 in order to simulate a typical industrial setting like working in front of a hot oven. The temperature evolution behind the foils indicated the performance of each PCM, which was dependent on the duration of the exposure. For irradiation times up to 9 min, sodium acetate trihydrate lead to the lowest temperature increase and thus the best protection. When irradiating more than 9 min, a zeolite type was found to be more suitable, which lead to a lower temperature increase of up to 36 °C compared to a reference with no PCM. We developed a simple heat transfer model, taking account of the latent heat of the PCM, of the heat capacity of the foil and of the radiant and natural convective heat flow, which could be applied to predict the effect of PCM containing foils and will be used for further optimizations.
► Comparison of different flame resistant PCMs for heat protection in textiles. ► Prediction of the heat protection of PCMs which have a net phase change temperature. ► Inorganic PCMs were shown to be highly effective for heat protection. |
doi_str_mv | 10.1016/j.applthermaleng.2013.02.025 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1531017769</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359431113001300</els_id><sourcerecordid>1448722851</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-c1dfe58f809fe0aafa7e351601853ea6506c0c2f0217724473563f0f130a99b93</originalsourceid><addsrcrecordid>eNqNkEtLAzEQgPegYK3-hz0oeGmdJJtkF7xIsVYoeNFzmGYnbco-arIV-u9NaRG8CQMDwzevL8vuGEwZMPW4neJu1wwbCi021K2nHJiYAk8hL7IRE7KaFIKxq-w6xi0A46UuRplYEA75LvQD2cH3Xb465LV3jgJ1qb7BSLndYLemvMWBgscm3mSXLiW6Pedx9jl_-ZgtJsv317fZ83JiC66GiWW1I1m6EipHgOhQk5BMASulIFQSlAXLHXCmNS8KLaQSDhwTgFW1qsQ4ezjNTed97SkOpvXRUtNgR_0-GiZFel1r9Q-0KErNeSlZQp9OqA19jIGc2QXfYjgYBuao0mzNX5XmqNIATyFT-_15E0aLjQvYWR9_Z3AtVAFKJW5-4igZ-vYUTLSeOku1D0m1qXv_v4U_apGS9Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1448722851</pqid></control><display><type>article</type><title>Heat protection by different phase change materials</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Bühler, M. ; Popa, A.M. ; Scherer, L.J. ; Lehmeier, F.K.S. ; Rossi, R.M.</creator><creatorcontrib>Bühler, M. ; Popa, A.M. ; Scherer, L.J. ; Lehmeier, F.K.S. ; Rossi, R.M.</creatorcontrib><description>Different types of phase change materials (PCMs) were compared for the use in heat protective clothing. For that purpose, flexible blister foils containing the PCMs were prepared. The samples were irradiated with a heat flux of 1.5 kW/m2 in order to simulate a typical industrial setting like working in front of a hot oven. The temperature evolution behind the foils indicated the performance of each PCM, which was dependent on the duration of the exposure. For irradiation times up to 9 min, sodium acetate trihydrate lead to the lowest temperature increase and thus the best protection. When irradiating more than 9 min, a zeolite type was found to be more suitable, which lead to a lower temperature increase of up to 36 °C compared to a reference with no PCM. We developed a simple heat transfer model, taking account of the latent heat of the PCM, of the heat capacity of the foil and of the radiant and natural convective heat flow, which could be applied to predict the effect of PCM containing foils and will be used for further optimizations.
► Comparison of different flame resistant PCMs for heat protection in textiles. ► Prediction of the heat protection of PCMs which have a net phase change temperature. ► Inorganic PCMs were shown to be highly effective for heat protection.</description><identifier>ISSN: 1359-4311</identifier><identifier>DOI: 10.1016/j.applthermaleng.2013.02.025</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Cooling ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Foils ; Heat protection ; Heat transfer ; Irradiation ; Mathematical models ; Ovens ; PCM ; Phase change material ; Phase change materials ; Protective clothing ; Specific heat ; Theoretical studies. Data and constants. Metering ; Thermal engineering ; Transport and storage of energy</subject><ispartof>Applied thermal engineering, 2013-05, Vol.54 (2), p.359-364</ispartof><rights>2013 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-c1dfe58f809fe0aafa7e351601853ea6506c0c2f0217724473563f0f130a99b93</citedby><cites>FETCH-LOGICAL-c426t-c1dfe58f809fe0aafa7e351601853ea6506c0c2f0217724473563f0f130a99b93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1359431113001300$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27364066$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Bühler, M.</creatorcontrib><creatorcontrib>Popa, A.M.</creatorcontrib><creatorcontrib>Scherer, L.J.</creatorcontrib><creatorcontrib>Lehmeier, F.K.S.</creatorcontrib><creatorcontrib>Rossi, R.M.</creatorcontrib><title>Heat protection by different phase change materials</title><title>Applied thermal engineering</title><description>Different types of phase change materials (PCMs) were compared for the use in heat protective clothing. For that purpose, flexible blister foils containing the PCMs were prepared. The samples were irradiated with a heat flux of 1.5 kW/m2 in order to simulate a typical industrial setting like working in front of a hot oven. The temperature evolution behind the foils indicated the performance of each PCM, which was dependent on the duration of the exposure. For irradiation times up to 9 min, sodium acetate trihydrate lead to the lowest temperature increase and thus the best protection. When irradiating more than 9 min, a zeolite type was found to be more suitable, which lead to a lower temperature increase of up to 36 °C compared to a reference with no PCM. We developed a simple heat transfer model, taking account of the latent heat of the PCM, of the heat capacity of the foil and of the radiant and natural convective heat flow, which could be applied to predict the effect of PCM containing foils and will be used for further optimizations.
► Comparison of different flame resistant PCMs for heat protection in textiles. ► Prediction of the heat protection of PCMs which have a net phase change temperature. ► Inorganic PCMs were shown to be highly effective for heat protection.</description><subject>Applied sciences</subject><subject>Cooling</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Foils</subject><subject>Heat protection</subject><subject>Heat transfer</subject><subject>Irradiation</subject><subject>Mathematical models</subject><subject>Ovens</subject><subject>PCM</subject><subject>Phase change material</subject><subject>Phase change materials</subject><subject>Protective clothing</subject><subject>Specific heat</subject><subject>Theoretical studies. Data and constants. Metering</subject><subject>Thermal engineering</subject><subject>Transport and storage of energy</subject><issn>1359-4311</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNkEtLAzEQgPegYK3-hz0oeGmdJJtkF7xIsVYoeNFzmGYnbco-arIV-u9NaRG8CQMDwzevL8vuGEwZMPW4neJu1wwbCi021K2nHJiYAk8hL7IRE7KaFIKxq-w6xi0A46UuRplYEA75LvQD2cH3Xb465LV3jgJ1qb7BSLndYLemvMWBgscm3mSXLiW6Pedx9jl_-ZgtJsv317fZ83JiC66GiWW1I1m6EipHgOhQk5BMASulIFQSlAXLHXCmNS8KLaQSDhwTgFW1qsQ4ezjNTed97SkOpvXRUtNgR_0-GiZFel1r9Q-0KErNeSlZQp9OqA19jIGc2QXfYjgYBuao0mzNX5XmqNIATyFT-_15E0aLjQvYWR9_Z3AtVAFKJW5-4igZ-vYUTLSeOku1D0m1qXv_v4U_apGS9Q</recordid><startdate>20130530</startdate><enddate>20130530</enddate><creator>Bühler, M.</creator><creator>Popa, A.M.</creator><creator>Scherer, L.J.</creator><creator>Lehmeier, F.K.S.</creator><creator>Rossi, R.M.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20130530</creationdate><title>Heat protection by different phase change materials</title><author>Bühler, M. ; Popa, A.M. ; Scherer, L.J. ; Lehmeier, F.K.S. ; Rossi, R.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-c1dfe58f809fe0aafa7e351601853ea6506c0c2f0217724473563f0f130a99b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Cooling</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Foils</topic><topic>Heat protection</topic><topic>Heat transfer</topic><topic>Irradiation</topic><topic>Mathematical models</topic><topic>Ovens</topic><topic>PCM</topic><topic>Phase change material</topic><topic>Phase change materials</topic><topic>Protective clothing</topic><topic>Specific heat</topic><topic>Theoretical studies. Data and constants. Metering</topic><topic>Thermal engineering</topic><topic>Transport and storage of energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bühler, M.</creatorcontrib><creatorcontrib>Popa, A.M.</creatorcontrib><creatorcontrib>Scherer, L.J.</creatorcontrib><creatorcontrib>Lehmeier, F.K.S.</creatorcontrib><creatorcontrib>Rossi, R.M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Applied thermal engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bühler, M.</au><au>Popa, A.M.</au><au>Scherer, L.J.</au><au>Lehmeier, F.K.S.</au><au>Rossi, R.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heat protection by different phase change materials</atitle><jtitle>Applied thermal engineering</jtitle><date>2013-05-30</date><risdate>2013</risdate><volume>54</volume><issue>2</issue><spage>359</spage><epage>364</epage><pages>359-364</pages><issn>1359-4311</issn><abstract>Different types of phase change materials (PCMs) were compared for the use in heat protective clothing. For that purpose, flexible blister foils containing the PCMs were prepared. The samples were irradiated with a heat flux of 1.5 kW/m2 in order to simulate a typical industrial setting like working in front of a hot oven. The temperature evolution behind the foils indicated the performance of each PCM, which was dependent on the duration of the exposure. For irradiation times up to 9 min, sodium acetate trihydrate lead to the lowest temperature increase and thus the best protection. When irradiating more than 9 min, a zeolite type was found to be more suitable, which lead to a lower temperature increase of up to 36 °C compared to a reference with no PCM. We developed a simple heat transfer model, taking account of the latent heat of the PCM, of the heat capacity of the foil and of the radiant and natural convective heat flow, which could be applied to predict the effect of PCM containing foils and will be used for further optimizations.
► Comparison of different flame resistant PCMs for heat protection in textiles. ► Prediction of the heat protection of PCMs which have a net phase change temperature. ► Inorganic PCMs were shown to be highly effective for heat protection.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.applthermaleng.2013.02.025</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1359-4311 |
ispartof | Applied thermal engineering, 2013-05, Vol.54 (2), p.359-364 |
issn | 1359-4311 |
language | eng |
recordid | cdi_proquest_miscellaneous_1531017769 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Applied sciences Cooling Energy Energy. Thermal use of fuels Exact sciences and technology Foils Heat protection Heat transfer Irradiation Mathematical models Ovens PCM Phase change material Phase change materials Protective clothing Specific heat Theoretical studies. Data and constants. Metering Thermal engineering Transport and storage of energy |
title | Heat protection by different phase change materials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T17%3A32%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heat%20protection%20by%20different%20phase%20change%20materials&rft.jtitle=Applied%20thermal%20engineering&rft.au=B%C3%BChler,%20M.&rft.date=2013-05-30&rft.volume=54&rft.issue=2&rft.spage=359&rft.epage=364&rft.pages=359-364&rft.issn=1359-4311&rft_id=info:doi/10.1016/j.applthermaleng.2013.02.025&rft_dat=%3Cproquest_cross%3E1448722851%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1448722851&rft_id=info:pmid/&rft_els_id=S1359431113001300&rfr_iscdi=true |