Optical detection of nonradiative recombination centers in AlGaN quantum wells for deep UV region

By superposing a chopped below‐gap excitation (BGE) light on a cw above‐gap excitation and observing the intensity change of photoluminescence (PL) due to the BGE, we clarified a distribution of nonradiative recombination (NRR) centers in AlGaN multi‐quantum well (MQW) structures for the wavelength...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica status solidi. C 2014-02, Vol.11 (3-4), p.832-835
Hauptverfasser: Touhidul Islam, A. Z. M., Murakoshi, N., Fukuda, T., Hirayama, H., Kamata, N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 835
container_issue 3-4
container_start_page 832
container_title Physica status solidi. C
container_volume 11
creator Touhidul Islam, A. Z. M.
Murakoshi, N.
Fukuda, T.
Hirayama, H.
Kamata, N.
description By superposing a chopped below‐gap excitation (BGE) light on a cw above‐gap excitation and observing the intensity change of photoluminescence (PL) due to the BGE, we clarified a distribution of nonradiative recombination (NRR) centers in AlGaN multi‐quantum well (MQW) structures for the wavelength region of deep ultraviolet (UV). The decrease in band‐edge PL peak intensity at 10 K exemplified the presence of a pair of NRR centers in AlGaN well layers whose transition energy corresponds to that of the BGE. The BGE power dependence of the normalized PL intensity showed a quenching saturation due to trap‐filling effect of electrons in one of the centers which were activated by the BGE. The BGE energy dependence of the normalized PL intensity revealed that the optical activation energy of the dominant NRR process via these trap states in the AlGaN MQW is around 1.17 eV. The purely optical scheme of detection enables us to obtain clues for identifying defect levels in DUV region and eliminating them during growth process without any preparation of electrodes. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)
doi_str_mv 10.1002/pssc.201300405
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1531017145</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3268541241</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4545-e44616def477f1e0aa8d42e4eb2416af7513ff00d9d896012909f5e73fdf5fb23</originalsourceid><addsrcrecordid>eNqFkE1v1DAQhiNEJUrLlbMlLlyynYk_khyrBZZK1ZZSWiQuljcZI5esndoJpf8eL4sqxKWnGWme59XoLYrXCAsEqE7GlLpFBcgBBMhnxSEqhBKVqJ7nvVFVqbjEF8XLlG4BuARUh4W5GCfXmYH1NFE3ueBZsMwHH03vzOR-EovUhe3GefPn2pGfKCbmPDsdVmbN7mbjp3nL7mkYErMh5iga2fVNFr9n47g4sGZI9OrvPCquP7z_svxYnl-szpan52UnpJAlCaFQ9WRFXVskMKbpRUWCNpVAZWwtkVsL0Ld90yrAqoXWSqq57a20m4ofFW_3uWMMdzOlSW9d6vJTxlOYk0bJEbBGITP65j_0NszR5-8yhZxzwZsdtdhTXQwpRbJ6jG5r4oNG0LvG9a5x_dh4Ftq9cO8GeniC1p-urpb_uuXedWmiX4-uiT-0qnkt9df1Sn--uWybb_KdXvPfFniUVg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1513334385</pqid></control><display><type>article</type><title>Optical detection of nonradiative recombination centers in AlGaN quantum wells for deep UV region</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Touhidul Islam, A. Z. M. ; Murakoshi, N. ; Fukuda, T. ; Hirayama, H. ; Kamata, N.</creator><creatorcontrib>Touhidul Islam, A. Z. M. ; Murakoshi, N. ; Fukuda, T. ; Hirayama, H. ; Kamata, N.</creatorcontrib><description>By superposing a chopped below‐gap excitation (BGE) light on a cw above‐gap excitation and observing the intensity change of photoluminescence (PL) due to the BGE, we clarified a distribution of nonradiative recombination (NRR) centers in AlGaN multi‐quantum well (MQW) structures for the wavelength region of deep ultraviolet (UV). The decrease in band‐edge PL peak intensity at 10 K exemplified the presence of a pair of NRR centers in AlGaN well layers whose transition energy corresponds to that of the BGE. The BGE power dependence of the normalized PL intensity showed a quenching saturation due to trap‐filling effect of electrons in one of the centers which were activated by the BGE. The BGE energy dependence of the normalized PL intensity revealed that the optical activation energy of the dominant NRR process via these trap states in the AlGaN MQW is around 1.17 eV. The purely optical scheme of detection enables us to obtain clues for identifying defect levels in DUV region and eliminating them during growth process without any preparation of electrodes. (© 2014 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim)</description><identifier>ISSN: 1862-6351</identifier><identifier>EISSN: 1610-1642</identifier><identifier>DOI: 10.1002/pssc.201300405</identifier><language>eng</language><publisher>Berlin: WILEY-VCH Verlag</publisher><subject>AlGaN quantum wells ; Aluminum gallium nitrides ; Electrodes ; Excitation ; nonradiative recombination center ; photoluminescence ; Quantum wells ; Quenching ; Saturation ; Solid state physics ; two-wavelength excitation ; Wavelengths</subject><ispartof>Physica status solidi. C, 2014-02, Vol.11 (3-4), p.832-835</ispartof><rights>Copyright © 2014 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>Copyright © 2014 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4545-e44616def477f1e0aa8d42e4eb2416af7513ff00d9d896012909f5e73fdf5fb23</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpssc.201300405$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpssc.201300405$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27907,27908,45557,45558</link.rule.ids></links><search><creatorcontrib>Touhidul Islam, A. Z. M.</creatorcontrib><creatorcontrib>Murakoshi, N.</creatorcontrib><creatorcontrib>Fukuda, T.</creatorcontrib><creatorcontrib>Hirayama, H.</creatorcontrib><creatorcontrib>Kamata, N.</creatorcontrib><title>Optical detection of nonradiative recombination centers in AlGaN quantum wells for deep UV region</title><title>Physica status solidi. C</title><addtitle>Phys. Status Solidi C</addtitle><description>By superposing a chopped below‐gap excitation (BGE) light on a cw above‐gap excitation and observing the intensity change of photoluminescence (PL) due to the BGE, we clarified a distribution of nonradiative recombination (NRR) centers in AlGaN multi‐quantum well (MQW) structures for the wavelength region of deep ultraviolet (UV). The decrease in band‐edge PL peak intensity at 10 K exemplified the presence of a pair of NRR centers in AlGaN well layers whose transition energy corresponds to that of the BGE. The BGE power dependence of the normalized PL intensity showed a quenching saturation due to trap‐filling effect of electrons in one of the centers which were activated by the BGE. The BGE energy dependence of the normalized PL intensity revealed that the optical activation energy of the dominant NRR process via these trap states in the AlGaN MQW is around 1.17 eV. The purely optical scheme of detection enables us to obtain clues for identifying defect levels in DUV region and eliminating them during growth process without any preparation of electrodes. (© 2014 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim)</description><subject>AlGaN quantum wells</subject><subject>Aluminum gallium nitrides</subject><subject>Electrodes</subject><subject>Excitation</subject><subject>nonradiative recombination center</subject><subject>photoluminescence</subject><subject>Quantum wells</subject><subject>Quenching</subject><subject>Saturation</subject><subject>Solid state physics</subject><subject>two-wavelength excitation</subject><subject>Wavelengths</subject><issn>1862-6351</issn><issn>1610-1642</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkE1v1DAQhiNEJUrLlbMlLlyynYk_khyrBZZK1ZZSWiQuljcZI5esndoJpf8eL4sqxKWnGWme59XoLYrXCAsEqE7GlLpFBcgBBMhnxSEqhBKVqJ7nvVFVqbjEF8XLlG4BuARUh4W5GCfXmYH1NFE3ueBZsMwHH03vzOR-EovUhe3GefPn2pGfKCbmPDsdVmbN7mbjp3nL7mkYErMh5iga2fVNFr9n47g4sGZI9OrvPCquP7z_svxYnl-szpan52UnpJAlCaFQ9WRFXVskMKbpRUWCNpVAZWwtkVsL0Ld90yrAqoXWSqq57a20m4ofFW_3uWMMdzOlSW9d6vJTxlOYk0bJEbBGITP65j_0NszR5-8yhZxzwZsdtdhTXQwpRbJ6jG5r4oNG0LvG9a5x_dh4Ftq9cO8GeniC1p-urpb_uuXedWmiX4-uiT-0qnkt9df1Sn--uWybb_KdXvPfFniUVg</recordid><startdate>20140201</startdate><enddate>20140201</enddate><creator>Touhidul Islam, A. Z. M.</creator><creator>Murakoshi, N.</creator><creator>Fukuda, T.</creator><creator>Hirayama, H.</creator><creator>Kamata, N.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7QF</scope><scope>7QQ</scope><scope>JG9</scope></search><sort><creationdate>20140201</creationdate><title>Optical detection of nonradiative recombination centers in AlGaN quantum wells for deep UV region</title><author>Touhidul Islam, A. Z. M. ; Murakoshi, N. ; Fukuda, T. ; Hirayama, H. ; Kamata, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4545-e44616def477f1e0aa8d42e4eb2416af7513ff00d9d896012909f5e73fdf5fb23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>AlGaN quantum wells</topic><topic>Aluminum gallium nitrides</topic><topic>Electrodes</topic><topic>Excitation</topic><topic>nonradiative recombination center</topic><topic>photoluminescence</topic><topic>Quantum wells</topic><topic>Quenching</topic><topic>Saturation</topic><topic>Solid state physics</topic><topic>two-wavelength excitation</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Touhidul Islam, A. Z. M.</creatorcontrib><creatorcontrib>Murakoshi, N.</creatorcontrib><creatorcontrib>Fukuda, T.</creatorcontrib><creatorcontrib>Hirayama, H.</creatorcontrib><creatorcontrib>Kamata, N.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Aluminium Industry Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Materials Research Database</collection><jtitle>Physica status solidi. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Touhidul Islam, A. Z. M.</au><au>Murakoshi, N.</au><au>Fukuda, T.</au><au>Hirayama, H.</au><au>Kamata, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optical detection of nonradiative recombination centers in AlGaN quantum wells for deep UV region</atitle><jtitle>Physica status solidi. C</jtitle><addtitle>Phys. Status Solidi C</addtitle><date>2014-02-01</date><risdate>2014</risdate><volume>11</volume><issue>3-4</issue><spage>832</spage><epage>835</epage><pages>832-835</pages><issn>1862-6351</issn><eissn>1610-1642</eissn><abstract>By superposing a chopped below‐gap excitation (BGE) light on a cw above‐gap excitation and observing the intensity change of photoluminescence (PL) due to the BGE, we clarified a distribution of nonradiative recombination (NRR) centers in AlGaN multi‐quantum well (MQW) structures for the wavelength region of deep ultraviolet (UV). The decrease in band‐edge PL peak intensity at 10 K exemplified the presence of a pair of NRR centers in AlGaN well layers whose transition energy corresponds to that of the BGE. The BGE power dependence of the normalized PL intensity showed a quenching saturation due to trap‐filling effect of electrons in one of the centers which were activated by the BGE. The BGE energy dependence of the normalized PL intensity revealed that the optical activation energy of the dominant NRR process via these trap states in the AlGaN MQW is around 1.17 eV. The purely optical scheme of detection enables us to obtain clues for identifying defect levels in DUV region and eliminating them during growth process without any preparation of electrodes. (© 2014 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim)</abstract><cop>Berlin</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/pssc.201300405</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1862-6351
ispartof Physica status solidi. C, 2014-02, Vol.11 (3-4), p.832-835
issn 1862-6351
1610-1642
language eng
recordid cdi_proquest_miscellaneous_1531017145
source Wiley Online Library Journals Frontfile Complete
subjects AlGaN quantum wells
Aluminum gallium nitrides
Electrodes
Excitation
nonradiative recombination center
photoluminescence
Quantum wells
Quenching
Saturation
Solid state physics
two-wavelength excitation
Wavelengths
title Optical detection of nonradiative recombination centers in AlGaN quantum wells for deep UV region
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T11%3A55%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optical%20detection%20of%20nonradiative%20recombination%20centers%20in%20AlGaN%20quantum%20wells%20for%20deep%20UV%20region&rft.jtitle=Physica%20status%20solidi.%20C&rft.au=Touhidul%20Islam,%20A.%20Z.%20M.&rft.date=2014-02-01&rft.volume=11&rft.issue=3-4&rft.spage=832&rft.epage=835&rft.pages=832-835&rft.issn=1862-6351&rft.eissn=1610-1642&rft_id=info:doi/10.1002/pssc.201300405&rft_dat=%3Cproquest_cross%3E3268541241%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1513334385&rft_id=info:pmid/&rfr_iscdi=true