Efficient Monte Carlo simulation for integral functionals of Brownian motion
In the paper, we develop a variance reduction technique for Monte Carlo simulations of integral functionals of a Brownian motion. The procedure is based on a new method of sampling the process, which combines the Brownian bridge construction with conditioning on integrals along paths of the process....
Gespeichert in:
Veröffentlicht in: | Journal of Complexity 2014-06, Vol.30 (3), p.255-278 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 278 |
---|---|
container_issue | 3 |
container_start_page | 255 |
container_title | Journal of Complexity |
container_volume | 30 |
creator | Kolkiewicz, Adam W. |
description | In the paper, we develop a variance reduction technique for Monte Carlo simulations of integral functionals of a Brownian motion. The procedure is based on a new method of sampling the process, which combines the Brownian bridge construction with conditioning on integrals along paths of the process. The key element in our method is the identification of a low-dimensional vector of variables that reduces the dimension of the integration problem more effectively than the Brownian bridge. We illustrate the method by applying it in conjunction with low-discrepancy sequences to the problem of pricing Asian options. |
doi_str_mv | 10.1016/j.jco.2013.12.005 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1531017133</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0885064X13001040</els_id><sourcerecordid>1531017133</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-347f7bfd846382ea2b474426b2ff92ac52e373e94852d5b3d30fbc23b8af995c3</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOI4-gLss3bTm2qa40mG8wIgbBXchTRNJaZMxaRXf3pRx7erAf4PzAXCJUYkRrq77stehJAjTEpMSIX4EVhg1qCA1EsdghYTgBarY-yk4S6lHCGNe4RXYba112hk_wefgJwM3Kg4BJjfOg5pc8NCGCF12PqIaoJ29XlQ1JBgsvIvh2zvl4RgW9Ryc2OyYi7-7Bm_329fNY7F7eXja3O4KTWs6FZTVtm5tJ1hFBTGKtKxmjFQtsbYhSnNics40THDS8ZZ2FNlWE9oKZZuGa7oGV4fdfQyfs0mTHF3SZhiUN2FOEnOaodSY0hzFh6iOIaVorNxHN6r4IzGSCznZy0xOLuQkJjKTy52bQ8fkH76ciTIthLTpXDR6kl1w_7R_Aftrdr4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1531017133</pqid></control><display><type>article</type><title>Efficient Monte Carlo simulation for integral functionals of Brownian motion</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Kolkiewicz, Adam W.</creator><creatorcontrib>Kolkiewicz, Adam W.</creatorcontrib><description>In the paper, we develop a variance reduction technique for Monte Carlo simulations of integral functionals of a Brownian motion. The procedure is based on a new method of sampling the process, which combines the Brownian bridge construction with conditioning on integrals along paths of the process. The key element in our method is the identification of a low-dimensional vector of variables that reduces the dimension of the integration problem more effectively than the Brownian bridge. We illustrate the method by applying it in conjunction with low-discrepancy sequences to the problem of pricing Asian options.</description><identifier>ISSN: 0885-064X</identifier><identifier>EISSN: 1090-2708</identifier><identifier>DOI: 10.1016/j.jco.2013.12.005</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Asian options ; Brownian bridge ; Brownian motion ; Computer simulation ; Functionals ; Integrals ; Integrals of Brownian motion ; Mathematical analysis ; Monte Carlo methods ; Quasi-Monte Carlo ; Sampling ; Stratified sampling ; Vectors (mathematics)</subject><ispartof>Journal of Complexity, 2014-06, Vol.30 (3), p.255-278</ispartof><rights>2013 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-347f7bfd846382ea2b474426b2ff92ac52e373e94852d5b3d30fbc23b8af995c3</citedby><cites>FETCH-LOGICAL-c373t-347f7bfd846382ea2b474426b2ff92ac52e373e94852d5b3d30fbc23b8af995c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jco.2013.12.005$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Kolkiewicz, Adam W.</creatorcontrib><title>Efficient Monte Carlo simulation for integral functionals of Brownian motion</title><title>Journal of Complexity</title><description>In the paper, we develop a variance reduction technique for Monte Carlo simulations of integral functionals of a Brownian motion. The procedure is based on a new method of sampling the process, which combines the Brownian bridge construction with conditioning on integrals along paths of the process. The key element in our method is the identification of a low-dimensional vector of variables that reduces the dimension of the integration problem more effectively than the Brownian bridge. We illustrate the method by applying it in conjunction with low-discrepancy sequences to the problem of pricing Asian options.</description><subject>Asian options</subject><subject>Brownian bridge</subject><subject>Brownian motion</subject><subject>Computer simulation</subject><subject>Functionals</subject><subject>Integrals</subject><subject>Integrals of Brownian motion</subject><subject>Mathematical analysis</subject><subject>Monte Carlo methods</subject><subject>Quasi-Monte Carlo</subject><subject>Sampling</subject><subject>Stratified sampling</subject><subject>Vectors (mathematics)</subject><issn>0885-064X</issn><issn>1090-2708</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxDAUhoMoOI4-gLss3bTm2qa40mG8wIgbBXchTRNJaZMxaRXf3pRx7erAf4PzAXCJUYkRrq77stehJAjTEpMSIX4EVhg1qCA1EsdghYTgBarY-yk4S6lHCGNe4RXYba112hk_wefgJwM3Kg4BJjfOg5pc8NCGCF12PqIaoJ29XlQ1JBgsvIvh2zvl4RgW9Ryc2OyYi7-7Bm_329fNY7F7eXja3O4KTWs6FZTVtm5tJ1hFBTGKtKxmjFQtsbYhSnNics40THDS8ZZ2FNlWE9oKZZuGa7oGV4fdfQyfs0mTHF3SZhiUN2FOEnOaodSY0hzFh6iOIaVorNxHN6r4IzGSCznZy0xOLuQkJjKTy52bQ8fkH76ciTIthLTpXDR6kl1w_7R_Aftrdr4</recordid><startdate>20140601</startdate><enddate>20140601</enddate><creator>Kolkiewicz, Adam W.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140601</creationdate><title>Efficient Monte Carlo simulation for integral functionals of Brownian motion</title><author>Kolkiewicz, Adam W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-347f7bfd846382ea2b474426b2ff92ac52e373e94852d5b3d30fbc23b8af995c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Asian options</topic><topic>Brownian bridge</topic><topic>Brownian motion</topic><topic>Computer simulation</topic><topic>Functionals</topic><topic>Integrals</topic><topic>Integrals of Brownian motion</topic><topic>Mathematical analysis</topic><topic>Monte Carlo methods</topic><topic>Quasi-Monte Carlo</topic><topic>Sampling</topic><topic>Stratified sampling</topic><topic>Vectors (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kolkiewicz, Adam W.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of Complexity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kolkiewicz, Adam W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient Monte Carlo simulation for integral functionals of Brownian motion</atitle><jtitle>Journal of Complexity</jtitle><date>2014-06-01</date><risdate>2014</risdate><volume>30</volume><issue>3</issue><spage>255</spage><epage>278</epage><pages>255-278</pages><issn>0885-064X</issn><eissn>1090-2708</eissn><abstract>In the paper, we develop a variance reduction technique for Monte Carlo simulations of integral functionals of a Brownian motion. The procedure is based on a new method of sampling the process, which combines the Brownian bridge construction with conditioning on integrals along paths of the process. The key element in our method is the identification of a low-dimensional vector of variables that reduces the dimension of the integration problem more effectively than the Brownian bridge. We illustrate the method by applying it in conjunction with low-discrepancy sequences to the problem of pricing Asian options.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jco.2013.12.005</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0885-064X |
ispartof | Journal of Complexity, 2014-06, Vol.30 (3), p.255-278 |
issn | 0885-064X 1090-2708 |
language | eng |
recordid | cdi_proquest_miscellaneous_1531017133 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; ScienceDirect Journals (5 years ago - present) |
subjects | Asian options Brownian bridge Brownian motion Computer simulation Functionals Integrals Integrals of Brownian motion Mathematical analysis Monte Carlo methods Quasi-Monte Carlo Sampling Stratified sampling Vectors (mathematics) |
title | Efficient Monte Carlo simulation for integral functionals of Brownian motion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T00%3A42%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20Monte%20Carlo%20simulation%20for%20integral%20functionals%20of%20Brownian%20motion&rft.jtitle=Journal%20of%20Complexity&rft.au=Kolkiewicz,%20Adam%20W.&rft.date=2014-06-01&rft.volume=30&rft.issue=3&rft.spage=255&rft.epage=278&rft.pages=255-278&rft.issn=0885-064X&rft.eissn=1090-2708&rft_id=info:doi/10.1016/j.jco.2013.12.005&rft_dat=%3Cproquest_cross%3E1531017133%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1531017133&rft_id=info:pmid/&rft_els_id=S0885064X13001040&rfr_iscdi=true |