Efficient Monte Carlo simulation for integral functionals of Brownian motion

In the paper, we develop a variance reduction technique for Monte Carlo simulations of integral functionals of a Brownian motion. The procedure is based on a new method of sampling the process, which combines the Brownian bridge construction with conditioning on integrals along paths of the process....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Complexity 2014-06, Vol.30 (3), p.255-278
1. Verfasser: Kolkiewicz, Adam W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 278
container_issue 3
container_start_page 255
container_title Journal of Complexity
container_volume 30
creator Kolkiewicz, Adam W.
description In the paper, we develop a variance reduction technique for Monte Carlo simulations of integral functionals of a Brownian motion. The procedure is based on a new method of sampling the process, which combines the Brownian bridge construction with conditioning on integrals along paths of the process. The key element in our method is the identification of a low-dimensional vector of variables that reduces the dimension of the integration problem more effectively than the Brownian bridge. We illustrate the method by applying it in conjunction with low-discrepancy sequences to the problem of pricing Asian options.
doi_str_mv 10.1016/j.jco.2013.12.005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1531017133</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0885064X13001040</els_id><sourcerecordid>1531017133</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-347f7bfd846382ea2b474426b2ff92ac52e373e94852d5b3d30fbc23b8af995c3</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOI4-gLss3bTm2qa40mG8wIgbBXchTRNJaZMxaRXf3pRx7erAf4PzAXCJUYkRrq77stehJAjTEpMSIX4EVhg1qCA1EsdghYTgBarY-yk4S6lHCGNe4RXYba112hk_wefgJwM3Kg4BJjfOg5pc8NCGCF12PqIaoJ29XlQ1JBgsvIvh2zvl4RgW9Ryc2OyYi7-7Bm_329fNY7F7eXja3O4KTWs6FZTVtm5tJ1hFBTGKtKxmjFQtsbYhSnNics40THDS8ZZ2FNlWE9oKZZuGa7oGV4fdfQyfs0mTHF3SZhiUN2FOEnOaodSY0hzFh6iOIaVorNxHN6r4IzGSCznZy0xOLuQkJjKTy52bQ8fkH76ciTIthLTpXDR6kl1w_7R_Aftrdr4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1531017133</pqid></control><display><type>article</type><title>Efficient Monte Carlo simulation for integral functionals of Brownian motion</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Kolkiewicz, Adam W.</creator><creatorcontrib>Kolkiewicz, Adam W.</creatorcontrib><description>In the paper, we develop a variance reduction technique for Monte Carlo simulations of integral functionals of a Brownian motion. The procedure is based on a new method of sampling the process, which combines the Brownian bridge construction with conditioning on integrals along paths of the process. The key element in our method is the identification of a low-dimensional vector of variables that reduces the dimension of the integration problem more effectively than the Brownian bridge. We illustrate the method by applying it in conjunction with low-discrepancy sequences to the problem of pricing Asian options.</description><identifier>ISSN: 0885-064X</identifier><identifier>EISSN: 1090-2708</identifier><identifier>DOI: 10.1016/j.jco.2013.12.005</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Asian options ; Brownian bridge ; Brownian motion ; Computer simulation ; Functionals ; Integrals ; Integrals of Brownian motion ; Mathematical analysis ; Monte Carlo methods ; Quasi-Monte Carlo ; Sampling ; Stratified sampling ; Vectors (mathematics)</subject><ispartof>Journal of Complexity, 2014-06, Vol.30 (3), p.255-278</ispartof><rights>2013 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-347f7bfd846382ea2b474426b2ff92ac52e373e94852d5b3d30fbc23b8af995c3</citedby><cites>FETCH-LOGICAL-c373t-347f7bfd846382ea2b474426b2ff92ac52e373e94852d5b3d30fbc23b8af995c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jco.2013.12.005$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Kolkiewicz, Adam W.</creatorcontrib><title>Efficient Monte Carlo simulation for integral functionals of Brownian motion</title><title>Journal of Complexity</title><description>In the paper, we develop a variance reduction technique for Monte Carlo simulations of integral functionals of a Brownian motion. The procedure is based on a new method of sampling the process, which combines the Brownian bridge construction with conditioning on integrals along paths of the process. The key element in our method is the identification of a low-dimensional vector of variables that reduces the dimension of the integration problem more effectively than the Brownian bridge. We illustrate the method by applying it in conjunction with low-discrepancy sequences to the problem of pricing Asian options.</description><subject>Asian options</subject><subject>Brownian bridge</subject><subject>Brownian motion</subject><subject>Computer simulation</subject><subject>Functionals</subject><subject>Integrals</subject><subject>Integrals of Brownian motion</subject><subject>Mathematical analysis</subject><subject>Monte Carlo methods</subject><subject>Quasi-Monte Carlo</subject><subject>Sampling</subject><subject>Stratified sampling</subject><subject>Vectors (mathematics)</subject><issn>0885-064X</issn><issn>1090-2708</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxDAUhoMoOI4-gLss3bTm2qa40mG8wIgbBXchTRNJaZMxaRXf3pRx7erAf4PzAXCJUYkRrq77stehJAjTEpMSIX4EVhg1qCA1EsdghYTgBarY-yk4S6lHCGNe4RXYba112hk_wefgJwM3Kg4BJjfOg5pc8NCGCF12PqIaoJ29XlQ1JBgsvIvh2zvl4RgW9Ryc2OyYi7-7Bm_329fNY7F7eXja3O4KTWs6FZTVtm5tJ1hFBTGKtKxmjFQtsbYhSnNics40THDS8ZZ2FNlWE9oKZZuGa7oGV4fdfQyfs0mTHF3SZhiUN2FOEnOaodSY0hzFh6iOIaVorNxHN6r4IzGSCznZy0xOLuQkJjKTy52bQ8fkH76ciTIthLTpXDR6kl1w_7R_Aftrdr4</recordid><startdate>20140601</startdate><enddate>20140601</enddate><creator>Kolkiewicz, Adam W.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140601</creationdate><title>Efficient Monte Carlo simulation for integral functionals of Brownian motion</title><author>Kolkiewicz, Adam W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-347f7bfd846382ea2b474426b2ff92ac52e373e94852d5b3d30fbc23b8af995c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Asian options</topic><topic>Brownian bridge</topic><topic>Brownian motion</topic><topic>Computer simulation</topic><topic>Functionals</topic><topic>Integrals</topic><topic>Integrals of Brownian motion</topic><topic>Mathematical analysis</topic><topic>Monte Carlo methods</topic><topic>Quasi-Monte Carlo</topic><topic>Sampling</topic><topic>Stratified sampling</topic><topic>Vectors (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kolkiewicz, Adam W.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of Complexity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kolkiewicz, Adam W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient Monte Carlo simulation for integral functionals of Brownian motion</atitle><jtitle>Journal of Complexity</jtitle><date>2014-06-01</date><risdate>2014</risdate><volume>30</volume><issue>3</issue><spage>255</spage><epage>278</epage><pages>255-278</pages><issn>0885-064X</issn><eissn>1090-2708</eissn><abstract>In the paper, we develop a variance reduction technique for Monte Carlo simulations of integral functionals of a Brownian motion. The procedure is based on a new method of sampling the process, which combines the Brownian bridge construction with conditioning on integrals along paths of the process. The key element in our method is the identification of a low-dimensional vector of variables that reduces the dimension of the integration problem more effectively than the Brownian bridge. We illustrate the method by applying it in conjunction with low-discrepancy sequences to the problem of pricing Asian options.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jco.2013.12.005</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0885-064X
ispartof Journal of Complexity, 2014-06, Vol.30 (3), p.255-278
issn 0885-064X
1090-2708
language eng
recordid cdi_proquest_miscellaneous_1531017133
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; ScienceDirect Journals (5 years ago - present)
subjects Asian options
Brownian bridge
Brownian motion
Computer simulation
Functionals
Integrals
Integrals of Brownian motion
Mathematical analysis
Monte Carlo methods
Quasi-Monte Carlo
Sampling
Stratified sampling
Vectors (mathematics)
title Efficient Monte Carlo simulation for integral functionals of Brownian motion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T00%3A42%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20Monte%20Carlo%20simulation%20for%20integral%20functionals%20of%20Brownian%20motion&rft.jtitle=Journal%20of%20Complexity&rft.au=Kolkiewicz,%20Adam%20W.&rft.date=2014-06-01&rft.volume=30&rft.issue=3&rft.spage=255&rft.epage=278&rft.pages=255-278&rft.issn=0885-064X&rft.eissn=1090-2708&rft_id=info:doi/10.1016/j.jco.2013.12.005&rft_dat=%3Cproquest_cross%3E1531017133%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1531017133&rft_id=info:pmid/&rft_els_id=S0885064X13001040&rfr_iscdi=true