Numerical evaluation of a dual-function microporous layer under subzero and normal operating temperatures for use in automotive fuel cells
In a previous study, we proposed a dual-function microporous layer (MPL) to improve the cold-start capability of polymer electrolyte fuel cells (PEFCs). The conceptual MPL design is to use an ionomer-based binder with low Pt loading, thereby allowing the MPL to provide additional volume for ice stor...
Gespeichert in:
Veröffentlicht in: | International journal of hydrogen energy 2014-02, Vol.39 (6), p.2854-2862 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2862 |
---|---|
container_issue | 6 |
container_start_page | 2854 |
container_title | International journal of hydrogen energy |
container_volume | 39 |
creator | Ko, Johan Ju, Hyunchul |
description | In a previous study, we proposed a dual-function microporous layer (MPL) to improve the cold-start capability of polymer electrolyte fuel cells (PEFCs). The conceptual MPL design is to use an ionomer-based binder with low Pt loading, thereby allowing the MPL to provide additional volume for ice storage during cold-start PEFC operations. Although the benefit of using a dual-function MPL was numerically elucidated in our previous study, the question regarding the use of this new MPL under normal PEFC operation remains to be addressed. In this paper, we extend our discussion to the effects of a dual-function MPL under subzero to normal operating temperatures. The three-dimensional (3D) cold-start PEFC model developed in our previous study is modified for transient PEFC simulations to consider a wide range of operating temperatures from −20 °C to 80 °C. Simulation results show a negligible performance drop at the normal PEFC temperature of 80 °C, because of the presence of the dual-function MPL in a PEFC membrane electrode assembly. In addition, water back flow from the cathode to anode is reduced on using the dual-function MPL, owing to the additional water uptake driven by its ionomer content. This study clearly demonstrates that this dual-function MPL technology may be applied to automotive PEFC stack development without sacrificing fabrication cost and cell performance during normal PEFC operations.
•MPL with ionomer binder and Pt loading can extend cold start operation time.•MPL with ionomer binder takes more time to reach the steady-state.•Use of dual-function MPLs does not cause significant cell performance drop.•Dual-function MPL can be applied to automotive PEFC stack development. |
doi_str_mv | 10.1016/j.ijhydene.2013.07.060 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1531009735</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360319913018077</els_id><sourcerecordid>1531009735</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-5b4588dc42afef9a9e641cd95c118c04a46a07d87062a95272a255ea833587a73</originalsourceid><addsrcrecordid>eNqFkM2OFCEUhYnRxHb0FQwbEzdVQlH81E4zcdRkohtdkzvURelUQQtFJ-0j-NTS06NbN0DIOefe8xHykrOeM67e7Puw_3GaMWI_MC56pnum2COy40ZPnRiNfkx2TCjWCT5NT8mzUvaMcc3GaUd-f64r5uBgoXiEpcIWUqTJU6BzhaXzNbr7rzW4nA4pp1roAifMtMa5naXe_cKcKMSZxpTXFpQOmFtO_E43XO_fNWOhPjVPQRoihbqlNW3hiNRXXKjDZSnPyRMPS8EXD_cV-Xbz_uv1x-72y4dP1-9uOzdytXXybpTGzG4cwKOfYEI1cjdP0nFuHBthVMD0bDRTA0xy0AMMUiIYIaTRoMUVeX3JPeT0s2LZ7BrKeQOI2NpZLgVnbNJCNqm6SFv3UjJ6e8hhhXyynNkzfLu3f-HbM3zLtG3wm_HVwwwoja3PEF0o_9yDEUoYzZvu7UWHrfAxYLbFBYwO55DRbXZO4X-j_gA-pKFP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1531009735</pqid></control><display><type>article</type><title>Numerical evaluation of a dual-function microporous layer under subzero and normal operating temperatures for use in automotive fuel cells</title><source>Access via ScienceDirect (Elsevier)</source><creator>Ko, Johan ; Ju, Hyunchul</creator><creatorcontrib>Ko, Johan ; Ju, Hyunchul</creatorcontrib><description>In a previous study, we proposed a dual-function microporous layer (MPL) to improve the cold-start capability of polymer electrolyte fuel cells (PEFCs). The conceptual MPL design is to use an ionomer-based binder with low Pt loading, thereby allowing the MPL to provide additional volume for ice storage during cold-start PEFC operations. Although the benefit of using a dual-function MPL was numerically elucidated in our previous study, the question regarding the use of this new MPL under normal PEFC operation remains to be addressed. In this paper, we extend our discussion to the effects of a dual-function MPL under subzero to normal operating temperatures. The three-dimensional (3D) cold-start PEFC model developed in our previous study is modified for transient PEFC simulations to consider a wide range of operating temperatures from −20 °C to 80 °C. Simulation results show a negligible performance drop at the normal PEFC temperature of 80 °C, because of the presence of the dual-function MPL in a PEFC membrane electrode assembly. In addition, water back flow from the cathode to anode is reduced on using the dual-function MPL, owing to the additional water uptake driven by its ionomer content. This study clearly demonstrates that this dual-function MPL technology may be applied to automotive PEFC stack development without sacrificing fabrication cost and cell performance during normal PEFC operations.
•MPL with ionomer binder and Pt loading can extend cold start operation time.•MPL with ionomer binder takes more time to reach the steady-state.•Use of dual-function MPLs does not cause significant cell performance drop.•Dual-function MPL can be applied to automotive PEFC stack development.</description><identifier>ISSN: 0360-3199</identifier><identifier>EISSN: 1879-3487</identifier><identifier>DOI: 10.1016/j.ijhydene.2013.07.060</identifier><identifier>CODEN: IJHEDX</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Alternative fuels. Production and utilization ; Applied sciences ; Binders ; Cold start ; Computer simulation ; Electrodes ; Electrolytic cells ; Energy ; Exact sciences and technology ; Fuels ; Hydrogen ; Mathematical models ; Microporous layer ; Numerical modeling ; Operating temperature ; Polymer electrolyte fuel cell ; Three dimensional ; Three dimensional models ; Transient simulation</subject><ispartof>International journal of hydrogen energy, 2014-02, Vol.39 (6), p.2854-2862</ispartof><rights>2013 Hydrogen Energy Publications, LLC.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-5b4588dc42afef9a9e641cd95c118c04a46a07d87062a95272a255ea833587a73</citedby><cites>FETCH-LOGICAL-c416t-5b4588dc42afef9a9e641cd95c118c04a46a07d87062a95272a255ea833587a73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijhydene.2013.07.060$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>310,311,315,781,785,790,791,3551,23931,23932,25141,27925,27926,45996</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28363871$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ko, Johan</creatorcontrib><creatorcontrib>Ju, Hyunchul</creatorcontrib><title>Numerical evaluation of a dual-function microporous layer under subzero and normal operating temperatures for use in automotive fuel cells</title><title>International journal of hydrogen energy</title><description>In a previous study, we proposed a dual-function microporous layer (MPL) to improve the cold-start capability of polymer electrolyte fuel cells (PEFCs). The conceptual MPL design is to use an ionomer-based binder with low Pt loading, thereby allowing the MPL to provide additional volume for ice storage during cold-start PEFC operations. Although the benefit of using a dual-function MPL was numerically elucidated in our previous study, the question regarding the use of this new MPL under normal PEFC operation remains to be addressed. In this paper, we extend our discussion to the effects of a dual-function MPL under subzero to normal operating temperatures. The three-dimensional (3D) cold-start PEFC model developed in our previous study is modified for transient PEFC simulations to consider a wide range of operating temperatures from −20 °C to 80 °C. Simulation results show a negligible performance drop at the normal PEFC temperature of 80 °C, because of the presence of the dual-function MPL in a PEFC membrane electrode assembly. In addition, water back flow from the cathode to anode is reduced on using the dual-function MPL, owing to the additional water uptake driven by its ionomer content. This study clearly demonstrates that this dual-function MPL technology may be applied to automotive PEFC stack development without sacrificing fabrication cost and cell performance during normal PEFC operations.
•MPL with ionomer binder and Pt loading can extend cold start operation time.•MPL with ionomer binder takes more time to reach the steady-state.•Use of dual-function MPLs does not cause significant cell performance drop.•Dual-function MPL can be applied to automotive PEFC stack development.</description><subject>Alternative fuels. Production and utilization</subject><subject>Applied sciences</subject><subject>Binders</subject><subject>Cold start</subject><subject>Computer simulation</subject><subject>Electrodes</subject><subject>Electrolytic cells</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Fuels</subject><subject>Hydrogen</subject><subject>Mathematical models</subject><subject>Microporous layer</subject><subject>Numerical modeling</subject><subject>Operating temperature</subject><subject>Polymer electrolyte fuel cell</subject><subject>Three dimensional</subject><subject>Three dimensional models</subject><subject>Transient simulation</subject><issn>0360-3199</issn><issn>1879-3487</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkM2OFCEUhYnRxHb0FQwbEzdVQlH81E4zcdRkohtdkzvURelUQQtFJ-0j-NTS06NbN0DIOefe8xHykrOeM67e7Puw_3GaMWI_MC56pnum2COy40ZPnRiNfkx2TCjWCT5NT8mzUvaMcc3GaUd-f64r5uBgoXiEpcIWUqTJU6BzhaXzNbr7rzW4nA4pp1roAifMtMa5naXe_cKcKMSZxpTXFpQOmFtO_E43XO_fNWOhPjVPQRoihbqlNW3hiNRXXKjDZSnPyRMPS8EXD_cV-Xbz_uv1x-72y4dP1-9uOzdytXXybpTGzG4cwKOfYEI1cjdP0nFuHBthVMD0bDRTA0xy0AMMUiIYIaTRoMUVeX3JPeT0s2LZ7BrKeQOI2NpZLgVnbNJCNqm6SFv3UjJ6e8hhhXyynNkzfLu3f-HbM3zLtG3wm_HVwwwoja3PEF0o_9yDEUoYzZvu7UWHrfAxYLbFBYwO55DRbXZO4X-j_gA-pKFP</recordid><startdate>20140214</startdate><enddate>20140214</enddate><creator>Ko, Johan</creator><creator>Ju, Hyunchul</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20140214</creationdate><title>Numerical evaluation of a dual-function microporous layer under subzero and normal operating temperatures for use in automotive fuel cells</title><author>Ko, Johan ; Ju, Hyunchul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-5b4588dc42afef9a9e641cd95c118c04a46a07d87062a95272a255ea833587a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Alternative fuels. Production and utilization</topic><topic>Applied sciences</topic><topic>Binders</topic><topic>Cold start</topic><topic>Computer simulation</topic><topic>Electrodes</topic><topic>Electrolytic cells</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Fuels</topic><topic>Hydrogen</topic><topic>Mathematical models</topic><topic>Microporous layer</topic><topic>Numerical modeling</topic><topic>Operating temperature</topic><topic>Polymer electrolyte fuel cell</topic><topic>Three dimensional</topic><topic>Three dimensional models</topic><topic>Transient simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ko, Johan</creatorcontrib><creatorcontrib>Ju, Hyunchul</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of hydrogen energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ko, Johan</au><au>Ju, Hyunchul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical evaluation of a dual-function microporous layer under subzero and normal operating temperatures for use in automotive fuel cells</atitle><jtitle>International journal of hydrogen energy</jtitle><date>2014-02-14</date><risdate>2014</risdate><volume>39</volume><issue>6</issue><spage>2854</spage><epage>2862</epage><pages>2854-2862</pages><issn>0360-3199</issn><eissn>1879-3487</eissn><coden>IJHEDX</coden><abstract>In a previous study, we proposed a dual-function microporous layer (MPL) to improve the cold-start capability of polymer electrolyte fuel cells (PEFCs). The conceptual MPL design is to use an ionomer-based binder with low Pt loading, thereby allowing the MPL to provide additional volume for ice storage during cold-start PEFC operations. Although the benefit of using a dual-function MPL was numerically elucidated in our previous study, the question regarding the use of this new MPL under normal PEFC operation remains to be addressed. In this paper, we extend our discussion to the effects of a dual-function MPL under subzero to normal operating temperatures. The three-dimensional (3D) cold-start PEFC model developed in our previous study is modified for transient PEFC simulations to consider a wide range of operating temperatures from −20 °C to 80 °C. Simulation results show a negligible performance drop at the normal PEFC temperature of 80 °C, because of the presence of the dual-function MPL in a PEFC membrane electrode assembly. In addition, water back flow from the cathode to anode is reduced on using the dual-function MPL, owing to the additional water uptake driven by its ionomer content. This study clearly demonstrates that this dual-function MPL technology may be applied to automotive PEFC stack development without sacrificing fabrication cost and cell performance during normal PEFC operations.
•MPL with ionomer binder and Pt loading can extend cold start operation time.•MPL with ionomer binder takes more time to reach the steady-state.•Use of dual-function MPLs does not cause significant cell performance drop.•Dual-function MPL can be applied to automotive PEFC stack development.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijhydene.2013.07.060</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0360-3199 |
ispartof | International journal of hydrogen energy, 2014-02, Vol.39 (6), p.2854-2862 |
issn | 0360-3199 1879-3487 |
language | eng |
recordid | cdi_proquest_miscellaneous_1531009735 |
source | Access via ScienceDirect (Elsevier) |
subjects | Alternative fuels. Production and utilization Applied sciences Binders Cold start Computer simulation Electrodes Electrolytic cells Energy Exact sciences and technology Fuels Hydrogen Mathematical models Microporous layer Numerical modeling Operating temperature Polymer electrolyte fuel cell Three dimensional Three dimensional models Transient simulation |
title | Numerical evaluation of a dual-function microporous layer under subzero and normal operating temperatures for use in automotive fuel cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T15%3A13%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20evaluation%20of%20a%20dual-function%20microporous%20layer%20under%20subzero%20and%20normal%20operating%20temperatures%20for%20use%20in%20automotive%20fuel%20cells&rft.jtitle=International%20journal%20of%20hydrogen%20energy&rft.au=Ko,%20Johan&rft.date=2014-02-14&rft.volume=39&rft.issue=6&rft.spage=2854&rft.epage=2862&rft.pages=2854-2862&rft.issn=0360-3199&rft.eissn=1879-3487&rft.coden=IJHEDX&rft_id=info:doi/10.1016/j.ijhydene.2013.07.060&rft_dat=%3Cproquest_cross%3E1531009735%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1531009735&rft_id=info:pmid/&rft_els_id=S0360319913018077&rfr_iscdi=true |