Induction motors airgap-eccentricity detection through the discrete wavelet transform of the apparent power signal under non-stationary operating conditions

Fast Fourier transform (FFT) analysis has been successfully used for fault diagnosis in induction machines. However, this method does not always provide good results for the cases of load torque, speed and voltages variation, leading to a variation of the motor-slip and the consequent FFT problems t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ISA transactions 2014-03, Vol.53 (2), p.603-611
Hauptverfasser: Yahia, K., Cardoso, A.J.M., Ghoggal, A., Zouzou, S.E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 611
container_issue 2
container_start_page 603
container_title ISA transactions
container_volume 53
creator Yahia, K.
Cardoso, A.J.M.
Ghoggal, A.
Zouzou, S.E.
description Fast Fourier transform (FFT) analysis has been successfully used for fault diagnosis in induction machines. However, this method does not always provide good results for the cases of load torque, speed and voltages variation, leading to a variation of the motor-slip and the consequent FFT problems that appear due to the non-stationary nature of the involved signals. In this paper, the discrete wavelet transform (DWT) of the apparent-power signal for the airgap-eccentricity fault detection in three-phase induction motors is presented in order to overcome the above FFT problems. The proposed method is based on the decomposition of the apparent-power signal from which wavelet approximation and detail coefficients are extracted. The energy evaluation of a known bandwidth permits to define a fault severity factor (FSF). Simulation as well as experimental results are provided to illustrate the effectiveness and accuracy of the proposed method presented even for the case of load torque variations. •The DWT of the apparent-power has been proposed for induction motors eccentricity diagnostic.•As compared to FFT, DWT method gives good diagnostic results in the case of load torque variation.•The DWT method has also the advantage of not requiring the knowledge of the motor-slip values.
doi_str_mv 10.1016/j.isatra.2013.12.002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1531009698</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0019057813002127</els_id><sourcerecordid>1504141551</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-f20494b577a16469b2aeb686bd7ea2e40fccfa838b1f5df3c1f07502503b71023</originalsourceid><addsrcrecordid>eNqNkctu1TAQhi1ERU8Lb4CQl2wSxs59g4SqFipVYlPWlmOPT32U2MF2WvVd-rD1aQpLxGo0ns__XH5CPjIoGbD2y6G0UaYgSw6sKhkvAfgbsmN9NxQcOH9LdgBsKKDp-lNyFuMBMtEM_Ttyyuu6ZVXX7sjTtdOrStY7OvvkQ6TShr1cClQKXQpW2fRINSbcoHQX_Lq_yxGptlGFXKEP8h4nTDRP46LxYabevBByWWTIMnTxDxhotHsnJ7o6nRPnXRGTPKrK8Ej9giEnbk-Vd9oen-N7cmLkFPHDazwnv64uby9-FDc_v19ffLspVDU0qTAc6qEem66TrK3bYeQSx7ZvR92h5FiDUcrIvupHZhptKsUMdE2-BVRjx4BX5-TzprsE_3vFmMScV8Npkg79GgVrKgYwtEP_HyjUrGZNwzJab6gKPsaARizBznlXwUAcLRQHsVkojhYKxgW8DPPptcM6zqj_fvrjWQa-bgDmk9xbDCIqi06htiG7JLS3_-7wDKT2s18</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1504141551</pqid></control><display><type>article</type><title>Induction motors airgap-eccentricity detection through the discrete wavelet transform of the apparent power signal under non-stationary operating conditions</title><source>Elsevier ScienceDirect Journals</source><creator>Yahia, K. ; Cardoso, A.J.M. ; Ghoggal, A. ; Zouzou, S.E.</creator><creatorcontrib>Yahia, K. ; Cardoso, A.J.M. ; Ghoggal, A. ; Zouzou, S.E.</creatorcontrib><description>Fast Fourier transform (FFT) analysis has been successfully used for fault diagnosis in induction machines. However, this method does not always provide good results for the cases of load torque, speed and voltages variation, leading to a variation of the motor-slip and the consequent FFT problems that appear due to the non-stationary nature of the involved signals. In this paper, the discrete wavelet transform (DWT) of the apparent-power signal for the airgap-eccentricity fault detection in three-phase induction motors is presented in order to overcome the above FFT problems. The proposed method is based on the decomposition of the apparent-power signal from which wavelet approximation and detail coefficients are extracted. The energy evaluation of a known bandwidth permits to define a fault severity factor (FSF). Simulation as well as experimental results are provided to illustrate the effectiveness and accuracy of the proposed method presented even for the case of load torque variations. •The DWT of the apparent-power has been proposed for induction motors eccentricity diagnostic.•As compared to FFT, DWT method gives good diagnostic results in the case of load torque variation.•The DWT method has also the advantage of not requiring the knowledge of the motor-slip values.</description><identifier>ISSN: 0019-0578</identifier><identifier>EISSN: 1879-2022</identifier><identifier>DOI: 10.1016/j.isatra.2013.12.002</identifier><identifier>PMID: 24461376</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Airgap-eccentricity fault detection ; Apparent-power ; Approximation ; Discrete Wavelet Transform ; Discrete wavelet transform (DWT) ; Electric potential ; Fourier transforms ; Induction motors ; Induction motors (IMs) ; Load torque variation ; Mathematical analysis ; Torque ; Voltage</subject><ispartof>ISA transactions, 2014-03, Vol.53 (2), p.603-611</ispartof><rights>2013 ISA</rights><rights>Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-f20494b577a16469b2aeb686bd7ea2e40fccfa838b1f5df3c1f07502503b71023</citedby><cites>FETCH-LOGICAL-c395t-f20494b577a16469b2aeb686bd7ea2e40fccfa838b1f5df3c1f07502503b71023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0019057813002127$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24461376$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yahia, K.</creatorcontrib><creatorcontrib>Cardoso, A.J.M.</creatorcontrib><creatorcontrib>Ghoggal, A.</creatorcontrib><creatorcontrib>Zouzou, S.E.</creatorcontrib><title>Induction motors airgap-eccentricity detection through the discrete wavelet transform of the apparent power signal under non-stationary operating conditions</title><title>ISA transactions</title><addtitle>ISA Trans</addtitle><description>Fast Fourier transform (FFT) analysis has been successfully used for fault diagnosis in induction machines. However, this method does not always provide good results for the cases of load torque, speed and voltages variation, leading to a variation of the motor-slip and the consequent FFT problems that appear due to the non-stationary nature of the involved signals. In this paper, the discrete wavelet transform (DWT) of the apparent-power signal for the airgap-eccentricity fault detection in three-phase induction motors is presented in order to overcome the above FFT problems. The proposed method is based on the decomposition of the apparent-power signal from which wavelet approximation and detail coefficients are extracted. The energy evaluation of a known bandwidth permits to define a fault severity factor (FSF). Simulation as well as experimental results are provided to illustrate the effectiveness and accuracy of the proposed method presented even for the case of load torque variations. •The DWT of the apparent-power has been proposed for induction motors eccentricity diagnostic.•As compared to FFT, DWT method gives good diagnostic results in the case of load torque variation.•The DWT method has also the advantage of not requiring the knowledge of the motor-slip values.</description><subject>Airgap-eccentricity fault detection</subject><subject>Apparent-power</subject><subject>Approximation</subject><subject>Discrete Wavelet Transform</subject><subject>Discrete wavelet transform (DWT)</subject><subject>Electric potential</subject><subject>Fourier transforms</subject><subject>Induction motors</subject><subject>Induction motors (IMs)</subject><subject>Load torque variation</subject><subject>Mathematical analysis</subject><subject>Torque</subject><subject>Voltage</subject><issn>0019-0578</issn><issn>1879-2022</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkctu1TAQhi1ERU8Lb4CQl2wSxs59g4SqFipVYlPWlmOPT32U2MF2WvVd-rD1aQpLxGo0ns__XH5CPjIoGbD2y6G0UaYgSw6sKhkvAfgbsmN9NxQcOH9LdgBsKKDp-lNyFuMBMtEM_Ttyyuu6ZVXX7sjTtdOrStY7OvvkQ6TShr1cClQKXQpW2fRINSbcoHQX_Lq_yxGptlGFXKEP8h4nTDRP46LxYabevBByWWTIMnTxDxhotHsnJ7o6nRPnXRGTPKrK8Ej9giEnbk-Vd9oen-N7cmLkFPHDazwnv64uby9-FDc_v19ffLspVDU0qTAc6qEem66TrK3bYeQSx7ZvR92h5FiDUcrIvupHZhptKsUMdE2-BVRjx4BX5-TzprsE_3vFmMScV8Npkg79GgVrKgYwtEP_HyjUrGZNwzJab6gKPsaARizBznlXwUAcLRQHsVkojhYKxgW8DPPptcM6zqj_fvrjWQa-bgDmk9xbDCIqi06htiG7JLS3_-7wDKT2s18</recordid><startdate>20140301</startdate><enddate>20140301</enddate><creator>Yahia, K.</creator><creator>Cardoso, A.J.M.</creator><creator>Ghoggal, A.</creator><creator>Zouzou, S.E.</creator><general>Elsevier Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SC</scope><scope>7SP</scope><scope>7TA</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140301</creationdate><title>Induction motors airgap-eccentricity detection through the discrete wavelet transform of the apparent power signal under non-stationary operating conditions</title><author>Yahia, K. ; Cardoso, A.J.M. ; Ghoggal, A. ; Zouzou, S.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-f20494b577a16469b2aeb686bd7ea2e40fccfa838b1f5df3c1f07502503b71023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Airgap-eccentricity fault detection</topic><topic>Apparent-power</topic><topic>Approximation</topic><topic>Discrete Wavelet Transform</topic><topic>Discrete wavelet transform (DWT)</topic><topic>Electric potential</topic><topic>Fourier transforms</topic><topic>Induction motors</topic><topic>Induction motors (IMs)</topic><topic>Load torque variation</topic><topic>Mathematical analysis</topic><topic>Torque</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yahia, K.</creatorcontrib><creatorcontrib>Cardoso, A.J.M.</creatorcontrib><creatorcontrib>Ghoggal, A.</creatorcontrib><creatorcontrib>Zouzou, S.E.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>ISA transactions</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yahia, K.</au><au>Cardoso, A.J.M.</au><au>Ghoggal, A.</au><au>Zouzou, S.E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Induction motors airgap-eccentricity detection through the discrete wavelet transform of the apparent power signal under non-stationary operating conditions</atitle><jtitle>ISA transactions</jtitle><addtitle>ISA Trans</addtitle><date>2014-03-01</date><risdate>2014</risdate><volume>53</volume><issue>2</issue><spage>603</spage><epage>611</epage><pages>603-611</pages><issn>0019-0578</issn><eissn>1879-2022</eissn><abstract>Fast Fourier transform (FFT) analysis has been successfully used for fault diagnosis in induction machines. However, this method does not always provide good results for the cases of load torque, speed and voltages variation, leading to a variation of the motor-slip and the consequent FFT problems that appear due to the non-stationary nature of the involved signals. In this paper, the discrete wavelet transform (DWT) of the apparent-power signal for the airgap-eccentricity fault detection in three-phase induction motors is presented in order to overcome the above FFT problems. The proposed method is based on the decomposition of the apparent-power signal from which wavelet approximation and detail coefficients are extracted. The energy evaluation of a known bandwidth permits to define a fault severity factor (FSF). Simulation as well as experimental results are provided to illustrate the effectiveness and accuracy of the proposed method presented even for the case of load torque variations. •The DWT of the apparent-power has been proposed for induction motors eccentricity diagnostic.•As compared to FFT, DWT method gives good diagnostic results in the case of load torque variation.•The DWT method has also the advantage of not requiring the knowledge of the motor-slip values.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>24461376</pmid><doi>10.1016/j.isatra.2013.12.002</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0019-0578
ispartof ISA transactions, 2014-03, Vol.53 (2), p.603-611
issn 0019-0578
1879-2022
language eng
recordid cdi_proquest_miscellaneous_1531009698
source Elsevier ScienceDirect Journals
subjects Airgap-eccentricity fault detection
Apparent-power
Approximation
Discrete Wavelet Transform
Discrete wavelet transform (DWT)
Electric potential
Fourier transforms
Induction motors
Induction motors (IMs)
Load torque variation
Mathematical analysis
Torque
Voltage
title Induction motors airgap-eccentricity detection through the discrete wavelet transform of the apparent power signal under non-stationary operating conditions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T20%3A56%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Induction%20motors%20airgap-eccentricity%20detection%20through%20the%20discrete%20wavelet%20transform%20of%20the%20apparent%20power%20signal%20under%20non-stationary%20operating%20conditions&rft.jtitle=ISA%20transactions&rft.au=Yahia,%20K.&rft.date=2014-03-01&rft.volume=53&rft.issue=2&rft.spage=603&rft.epage=611&rft.pages=603-611&rft.issn=0019-0578&rft.eissn=1879-2022&rft_id=info:doi/10.1016/j.isatra.2013.12.002&rft_dat=%3Cproquest_cross%3E1504141551%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1504141551&rft_id=info:pmid/24461376&rft_els_id=S0019057813002127&rfr_iscdi=true