Modulation of the band gap of graphene oxide: The role of AA-stacking

The unique electronic properties of graphene make it an advantageous material for use in many applications, except those that require a band gap. Much work has been done to introduce an appropriately tuned band gap into graphene, including uniaxial strain and oxidation, with varying levels of succes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Carbon (New York) 2014-01, Vol.66, p.539-546
Hauptverfasser: Hunt, A., Dikin, D.A., Kurmaev, E.Z., Lee, Y.H., Luan, N.V., Chang, G.S., Moewes, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 546
container_issue
container_start_page 539
container_title Carbon (New York)
container_volume 66
creator Hunt, A.
Dikin, D.A.
Kurmaev, E.Z.
Lee, Y.H.
Luan, N.V.
Chang, G.S.
Moewes, A.
description The unique electronic properties of graphene make it an advantageous material for use in many applications, except those that require a band gap. Much work has been done to introduce an appropriately tuned band gap into graphene, including uniaxial strain and oxidation, with varying levels of success. We report here that the stacking configuration of the sheets in multilayered graphene oxide can have a significant impact on the band gap. Through comparison of X-ray absorption near-edge spectra of multilayered pristine graphene sheets with spectra simulated using density functional theory, we have found that AA-stacking pushes unoccupied states closer to the Fermi level than AB-stacking by widening the π∗ resonance in both graphene oxide and graphene. If the near-Fermi states have been removed such that the nearest unoccupied state to the Fermi level is the π∗ band, then AA-stacked multilayered graphene oxide will have a smaller band gap than AB-stacked graphene oxide. We have confirmed this by measuring the band gap of graphene oxide and reduced graphene oxide indirectly using X-ray absorption near-edge spectroscopy and X-ray emission spectroscopy. Controlling the stacking configuration of multilayered graphene oxide may provide a novel method for tuning its band gap.
doi_str_mv 10.1016/j.carbon.2013.09.036
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1531008875</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0008622313008907</els_id><sourcerecordid>1531008875</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-e382c012d77eb64916422a3e5d65622303dd8c661979368ada2adcab5d38e8903</originalsourceid><addsrcrecordid>eNqFULtOwzAUtRBIlMIfMGRkSfAjcWwGpKoqD6mIpcyWY9-0Lmkc7BTB35MozDBdHZ2H7jkIXROcEUz47T4zOlS-zSgmLMMyw4yfoBkRJUuZkOQUzTDGIuWUsnN0EeN-gLkg-QytXrw9Nrp3vk18nfQ7SCrd2mSruxFvg-520ELiv5yFu2Qz8ME3MHKLRRp7bd5du71EZ7VuIlz93jl6e1htlk_p-vXxeblYp4aVtE-BCWowobYsoeK5JDynVDMoLC_G3zCzVhjOiSwl40JbTbU1uiosEyAkZnN0M-V2wX8cIfbq4KKBptEt-GNUpGBkKCrK4n9pXhYFkxKP0nySmuBjDFCrLriDDt-KYDUOrPZqGliNAyss1TDwYLufbDA0_nQQVDQOWgPWBTC9st79HfADYCmDQA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1475539905</pqid></control><display><type>article</type><title>Modulation of the band gap of graphene oxide: The role of AA-stacking</title><source>Elsevier ScienceDirect Journals</source><creator>Hunt, A. ; Dikin, D.A. ; Kurmaev, E.Z. ; Lee, Y.H. ; Luan, N.V. ; Chang, G.S. ; Moewes, A.</creator><creatorcontrib>Hunt, A. ; Dikin, D.A. ; Kurmaev, E.Z. ; Lee, Y.H. ; Luan, N.V. ; Chang, G.S. ; Moewes, A.</creatorcontrib><description>The unique electronic properties of graphene make it an advantageous material for use in many applications, except those that require a band gap. Much work has been done to introduce an appropriately tuned band gap into graphene, including uniaxial strain and oxidation, with varying levels of success. We report here that the stacking configuration of the sheets in multilayered graphene oxide can have a significant impact on the band gap. Through comparison of X-ray absorption near-edge spectra of multilayered pristine graphene sheets with spectra simulated using density functional theory, we have found that AA-stacking pushes unoccupied states closer to the Fermi level than AB-stacking by widening the π∗ resonance in both graphene oxide and graphene. If the near-Fermi states have been removed such that the nearest unoccupied state to the Fermi level is the π∗ band, then AA-stacked multilayered graphene oxide will have a smaller band gap than AB-stacked graphene oxide. We have confirmed this by measuring the band gap of graphene oxide and reduced graphene oxide indirectly using X-ray absorption near-edge spectroscopy and X-ray emission spectroscopy. Controlling the stacking configuration of multilayered graphene oxide may provide a novel method for tuning its band gap.</description><identifier>ISSN: 0008-6223</identifier><identifier>EISSN: 1873-3891</identifier><identifier>DOI: 10.1016/j.carbon.2013.09.036</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Carbon ; Fermi level ; Fermi surfaces ; Graphene ; Oxides ; Spectra ; Stacking ; X-rays</subject><ispartof>Carbon (New York), 2014-01, Vol.66, p.539-546</ispartof><rights>2013 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-e382c012d77eb64916422a3e5d65622303dd8c661979368ada2adcab5d38e8903</citedby><cites>FETCH-LOGICAL-c372t-e382c012d77eb64916422a3e5d65622303dd8c661979368ada2adcab5d38e8903</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0008622313008907$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Hunt, A.</creatorcontrib><creatorcontrib>Dikin, D.A.</creatorcontrib><creatorcontrib>Kurmaev, E.Z.</creatorcontrib><creatorcontrib>Lee, Y.H.</creatorcontrib><creatorcontrib>Luan, N.V.</creatorcontrib><creatorcontrib>Chang, G.S.</creatorcontrib><creatorcontrib>Moewes, A.</creatorcontrib><title>Modulation of the band gap of graphene oxide: The role of AA-stacking</title><title>Carbon (New York)</title><description>The unique electronic properties of graphene make it an advantageous material for use in many applications, except those that require a band gap. Much work has been done to introduce an appropriately tuned band gap into graphene, including uniaxial strain and oxidation, with varying levels of success. We report here that the stacking configuration of the sheets in multilayered graphene oxide can have a significant impact on the band gap. Through comparison of X-ray absorption near-edge spectra of multilayered pristine graphene sheets with spectra simulated using density functional theory, we have found that AA-stacking pushes unoccupied states closer to the Fermi level than AB-stacking by widening the π∗ resonance in both graphene oxide and graphene. If the near-Fermi states have been removed such that the nearest unoccupied state to the Fermi level is the π∗ band, then AA-stacked multilayered graphene oxide will have a smaller band gap than AB-stacked graphene oxide. We have confirmed this by measuring the band gap of graphene oxide and reduced graphene oxide indirectly using X-ray absorption near-edge spectroscopy and X-ray emission spectroscopy. Controlling the stacking configuration of multilayered graphene oxide may provide a novel method for tuning its band gap.</description><subject>Carbon</subject><subject>Fermi level</subject><subject>Fermi surfaces</subject><subject>Graphene</subject><subject>Oxides</subject><subject>Spectra</subject><subject>Stacking</subject><subject>X-rays</subject><issn>0008-6223</issn><issn>1873-3891</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFULtOwzAUtRBIlMIfMGRkSfAjcWwGpKoqD6mIpcyWY9-0Lmkc7BTB35MozDBdHZ2H7jkIXROcEUz47T4zOlS-zSgmLMMyw4yfoBkRJUuZkOQUzTDGIuWUsnN0EeN-gLkg-QytXrw9Nrp3vk18nfQ7SCrd2mSruxFvg-520ELiv5yFu2Qz8ME3MHKLRRp7bd5du71EZ7VuIlz93jl6e1htlk_p-vXxeblYp4aVtE-BCWowobYsoeK5JDynVDMoLC_G3zCzVhjOiSwl40JbTbU1uiosEyAkZnN0M-V2wX8cIfbq4KKBptEt-GNUpGBkKCrK4n9pXhYFkxKP0nySmuBjDFCrLriDDt-KYDUOrPZqGliNAyss1TDwYLufbDA0_nQQVDQOWgPWBTC9st79HfADYCmDQA</recordid><startdate>201401</startdate><enddate>201401</enddate><creator>Hunt, A.</creator><creator>Dikin, D.A.</creator><creator>Kurmaev, E.Z.</creator><creator>Lee, Y.H.</creator><creator>Luan, N.V.</creator><creator>Chang, G.S.</creator><creator>Moewes, A.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>201401</creationdate><title>Modulation of the band gap of graphene oxide: The role of AA-stacking</title><author>Hunt, A. ; Dikin, D.A. ; Kurmaev, E.Z. ; Lee, Y.H. ; Luan, N.V. ; Chang, G.S. ; Moewes, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-e382c012d77eb64916422a3e5d65622303dd8c661979368ada2adcab5d38e8903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Carbon</topic><topic>Fermi level</topic><topic>Fermi surfaces</topic><topic>Graphene</topic><topic>Oxides</topic><topic>Spectra</topic><topic>Stacking</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hunt, A.</creatorcontrib><creatorcontrib>Dikin, D.A.</creatorcontrib><creatorcontrib>Kurmaev, E.Z.</creatorcontrib><creatorcontrib>Lee, Y.H.</creatorcontrib><creatorcontrib>Luan, N.V.</creatorcontrib><creatorcontrib>Chang, G.S.</creatorcontrib><creatorcontrib>Moewes, A.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Carbon (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hunt, A.</au><au>Dikin, D.A.</au><au>Kurmaev, E.Z.</au><au>Lee, Y.H.</au><au>Luan, N.V.</au><au>Chang, G.S.</au><au>Moewes, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modulation of the band gap of graphene oxide: The role of AA-stacking</atitle><jtitle>Carbon (New York)</jtitle><date>2014-01</date><risdate>2014</risdate><volume>66</volume><spage>539</spage><epage>546</epage><pages>539-546</pages><issn>0008-6223</issn><eissn>1873-3891</eissn><abstract>The unique electronic properties of graphene make it an advantageous material for use in many applications, except those that require a band gap. Much work has been done to introduce an appropriately tuned band gap into graphene, including uniaxial strain and oxidation, with varying levels of success. We report here that the stacking configuration of the sheets in multilayered graphene oxide can have a significant impact on the band gap. Through comparison of X-ray absorption near-edge spectra of multilayered pristine graphene sheets with spectra simulated using density functional theory, we have found that AA-stacking pushes unoccupied states closer to the Fermi level than AB-stacking by widening the π∗ resonance in both graphene oxide and graphene. If the near-Fermi states have been removed such that the nearest unoccupied state to the Fermi level is the π∗ band, then AA-stacked multilayered graphene oxide will have a smaller band gap than AB-stacked graphene oxide. We have confirmed this by measuring the band gap of graphene oxide and reduced graphene oxide indirectly using X-ray absorption near-edge spectroscopy and X-ray emission spectroscopy. Controlling the stacking configuration of multilayered graphene oxide may provide a novel method for tuning its band gap.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.carbon.2013.09.036</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0008-6223
ispartof Carbon (New York), 2014-01, Vol.66, p.539-546
issn 0008-6223
1873-3891
language eng
recordid cdi_proquest_miscellaneous_1531008875
source Elsevier ScienceDirect Journals
subjects Carbon
Fermi level
Fermi surfaces
Graphene
Oxides
Spectra
Stacking
X-rays
title Modulation of the band gap of graphene oxide: The role of AA-stacking
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T22%3A43%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modulation%20of%20the%20band%20gap%20of%20graphene%20oxide:%20The%20role%20of%20AA-stacking&rft.jtitle=Carbon%20(New%20York)&rft.au=Hunt,%20A.&rft.date=2014-01&rft.volume=66&rft.spage=539&rft.epage=546&rft.pages=539-546&rft.issn=0008-6223&rft.eissn=1873-3891&rft_id=info:doi/10.1016/j.carbon.2013.09.036&rft_dat=%3Cproquest_cross%3E1531008875%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1475539905&rft_id=info:pmid/&rft_els_id=S0008622313008907&rfr_iscdi=true