Modulation of the band gap of graphene oxide: The role of AA-stacking
The unique electronic properties of graphene make it an advantageous material for use in many applications, except those that require a band gap. Much work has been done to introduce an appropriately tuned band gap into graphene, including uniaxial strain and oxidation, with varying levels of succes...
Gespeichert in:
Veröffentlicht in: | Carbon (New York) 2014-01, Vol.66, p.539-546 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 546 |
---|---|
container_issue | |
container_start_page | 539 |
container_title | Carbon (New York) |
container_volume | 66 |
creator | Hunt, A. Dikin, D.A. Kurmaev, E.Z. Lee, Y.H. Luan, N.V. Chang, G.S. Moewes, A. |
description | The unique electronic properties of graphene make it an advantageous material for use in many applications, except those that require a band gap. Much work has been done to introduce an appropriately tuned band gap into graphene, including uniaxial strain and oxidation, with varying levels of success. We report here that the stacking configuration of the sheets in multilayered graphene oxide can have a significant impact on the band gap. Through comparison of X-ray absorption near-edge spectra of multilayered pristine graphene sheets with spectra simulated using density functional theory, we have found that AA-stacking pushes unoccupied states closer to the Fermi level than AB-stacking by widening the π∗ resonance in both graphene oxide and graphene. If the near-Fermi states have been removed such that the nearest unoccupied state to the Fermi level is the π∗ band, then AA-stacked multilayered graphene oxide will have a smaller band gap than AB-stacked graphene oxide. We have confirmed this by measuring the band gap of graphene oxide and reduced graphene oxide indirectly using X-ray absorption near-edge spectroscopy and X-ray emission spectroscopy. Controlling the stacking configuration of multilayered graphene oxide may provide a novel method for tuning its band gap. |
doi_str_mv | 10.1016/j.carbon.2013.09.036 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1531008875</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0008622313008907</els_id><sourcerecordid>1531008875</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-e382c012d77eb64916422a3e5d65622303dd8c661979368ada2adcab5d38e8903</originalsourceid><addsrcrecordid>eNqFULtOwzAUtRBIlMIfMGRkSfAjcWwGpKoqD6mIpcyWY9-0Lmkc7BTB35MozDBdHZ2H7jkIXROcEUz47T4zOlS-zSgmLMMyw4yfoBkRJUuZkOQUzTDGIuWUsnN0EeN-gLkg-QytXrw9Nrp3vk18nfQ7SCrd2mSruxFvg-520ELiv5yFu2Qz8ME3MHKLRRp7bd5du71EZ7VuIlz93jl6e1htlk_p-vXxeblYp4aVtE-BCWowobYsoeK5JDynVDMoLC_G3zCzVhjOiSwl40JbTbU1uiosEyAkZnN0M-V2wX8cIfbq4KKBptEt-GNUpGBkKCrK4n9pXhYFkxKP0nySmuBjDFCrLriDDt-KYDUOrPZqGliNAyss1TDwYLufbDA0_nQQVDQOWgPWBTC9st79HfADYCmDQA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1475539905</pqid></control><display><type>article</type><title>Modulation of the band gap of graphene oxide: The role of AA-stacking</title><source>Elsevier ScienceDirect Journals</source><creator>Hunt, A. ; Dikin, D.A. ; Kurmaev, E.Z. ; Lee, Y.H. ; Luan, N.V. ; Chang, G.S. ; Moewes, A.</creator><creatorcontrib>Hunt, A. ; Dikin, D.A. ; Kurmaev, E.Z. ; Lee, Y.H. ; Luan, N.V. ; Chang, G.S. ; Moewes, A.</creatorcontrib><description>The unique electronic properties of graphene make it an advantageous material for use in many applications, except those that require a band gap. Much work has been done to introduce an appropriately tuned band gap into graphene, including uniaxial strain and oxidation, with varying levels of success. We report here that the stacking configuration of the sheets in multilayered graphene oxide can have a significant impact on the band gap. Through comparison of X-ray absorption near-edge spectra of multilayered pristine graphene sheets with spectra simulated using density functional theory, we have found that AA-stacking pushes unoccupied states closer to the Fermi level than AB-stacking by widening the π∗ resonance in both graphene oxide and graphene. If the near-Fermi states have been removed such that the nearest unoccupied state to the Fermi level is the π∗ band, then AA-stacked multilayered graphene oxide will have a smaller band gap than AB-stacked graphene oxide. We have confirmed this by measuring the band gap of graphene oxide and reduced graphene oxide indirectly using X-ray absorption near-edge spectroscopy and X-ray emission spectroscopy. Controlling the stacking configuration of multilayered graphene oxide may provide a novel method for tuning its band gap.</description><identifier>ISSN: 0008-6223</identifier><identifier>EISSN: 1873-3891</identifier><identifier>DOI: 10.1016/j.carbon.2013.09.036</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Carbon ; Fermi level ; Fermi surfaces ; Graphene ; Oxides ; Spectra ; Stacking ; X-rays</subject><ispartof>Carbon (New York), 2014-01, Vol.66, p.539-546</ispartof><rights>2013 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-e382c012d77eb64916422a3e5d65622303dd8c661979368ada2adcab5d38e8903</citedby><cites>FETCH-LOGICAL-c372t-e382c012d77eb64916422a3e5d65622303dd8c661979368ada2adcab5d38e8903</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0008622313008907$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Hunt, A.</creatorcontrib><creatorcontrib>Dikin, D.A.</creatorcontrib><creatorcontrib>Kurmaev, E.Z.</creatorcontrib><creatorcontrib>Lee, Y.H.</creatorcontrib><creatorcontrib>Luan, N.V.</creatorcontrib><creatorcontrib>Chang, G.S.</creatorcontrib><creatorcontrib>Moewes, A.</creatorcontrib><title>Modulation of the band gap of graphene oxide: The role of AA-stacking</title><title>Carbon (New York)</title><description>The unique electronic properties of graphene make it an advantageous material for use in many applications, except those that require a band gap. Much work has been done to introduce an appropriately tuned band gap into graphene, including uniaxial strain and oxidation, with varying levels of success. We report here that the stacking configuration of the sheets in multilayered graphene oxide can have a significant impact on the band gap. Through comparison of X-ray absorption near-edge spectra of multilayered pristine graphene sheets with spectra simulated using density functional theory, we have found that AA-stacking pushes unoccupied states closer to the Fermi level than AB-stacking by widening the π∗ resonance in both graphene oxide and graphene. If the near-Fermi states have been removed such that the nearest unoccupied state to the Fermi level is the π∗ band, then AA-stacked multilayered graphene oxide will have a smaller band gap than AB-stacked graphene oxide. We have confirmed this by measuring the band gap of graphene oxide and reduced graphene oxide indirectly using X-ray absorption near-edge spectroscopy and X-ray emission spectroscopy. Controlling the stacking configuration of multilayered graphene oxide may provide a novel method for tuning its band gap.</description><subject>Carbon</subject><subject>Fermi level</subject><subject>Fermi surfaces</subject><subject>Graphene</subject><subject>Oxides</subject><subject>Spectra</subject><subject>Stacking</subject><subject>X-rays</subject><issn>0008-6223</issn><issn>1873-3891</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFULtOwzAUtRBIlMIfMGRkSfAjcWwGpKoqD6mIpcyWY9-0Lmkc7BTB35MozDBdHZ2H7jkIXROcEUz47T4zOlS-zSgmLMMyw4yfoBkRJUuZkOQUzTDGIuWUsnN0EeN-gLkg-QytXrw9Nrp3vk18nfQ7SCrd2mSruxFvg-520ELiv5yFu2Qz8ME3MHKLRRp7bd5du71EZ7VuIlz93jl6e1htlk_p-vXxeblYp4aVtE-BCWowobYsoeK5JDynVDMoLC_G3zCzVhjOiSwl40JbTbU1uiosEyAkZnN0M-V2wX8cIfbq4KKBptEt-GNUpGBkKCrK4n9pXhYFkxKP0nySmuBjDFCrLriDDt-KYDUOrPZqGliNAyss1TDwYLufbDA0_nQQVDQOWgPWBTC9st79HfADYCmDQA</recordid><startdate>201401</startdate><enddate>201401</enddate><creator>Hunt, A.</creator><creator>Dikin, D.A.</creator><creator>Kurmaev, E.Z.</creator><creator>Lee, Y.H.</creator><creator>Luan, N.V.</creator><creator>Chang, G.S.</creator><creator>Moewes, A.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>201401</creationdate><title>Modulation of the band gap of graphene oxide: The role of AA-stacking</title><author>Hunt, A. ; Dikin, D.A. ; Kurmaev, E.Z. ; Lee, Y.H. ; Luan, N.V. ; Chang, G.S. ; Moewes, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-e382c012d77eb64916422a3e5d65622303dd8c661979368ada2adcab5d38e8903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Carbon</topic><topic>Fermi level</topic><topic>Fermi surfaces</topic><topic>Graphene</topic><topic>Oxides</topic><topic>Spectra</topic><topic>Stacking</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hunt, A.</creatorcontrib><creatorcontrib>Dikin, D.A.</creatorcontrib><creatorcontrib>Kurmaev, E.Z.</creatorcontrib><creatorcontrib>Lee, Y.H.</creatorcontrib><creatorcontrib>Luan, N.V.</creatorcontrib><creatorcontrib>Chang, G.S.</creatorcontrib><creatorcontrib>Moewes, A.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Carbon (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hunt, A.</au><au>Dikin, D.A.</au><au>Kurmaev, E.Z.</au><au>Lee, Y.H.</au><au>Luan, N.V.</au><au>Chang, G.S.</au><au>Moewes, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modulation of the band gap of graphene oxide: The role of AA-stacking</atitle><jtitle>Carbon (New York)</jtitle><date>2014-01</date><risdate>2014</risdate><volume>66</volume><spage>539</spage><epage>546</epage><pages>539-546</pages><issn>0008-6223</issn><eissn>1873-3891</eissn><abstract>The unique electronic properties of graphene make it an advantageous material for use in many applications, except those that require a band gap. Much work has been done to introduce an appropriately tuned band gap into graphene, including uniaxial strain and oxidation, with varying levels of success. We report here that the stacking configuration of the sheets in multilayered graphene oxide can have a significant impact on the band gap. Through comparison of X-ray absorption near-edge spectra of multilayered pristine graphene sheets with spectra simulated using density functional theory, we have found that AA-stacking pushes unoccupied states closer to the Fermi level than AB-stacking by widening the π∗ resonance in both graphene oxide and graphene. If the near-Fermi states have been removed such that the nearest unoccupied state to the Fermi level is the π∗ band, then AA-stacked multilayered graphene oxide will have a smaller band gap than AB-stacked graphene oxide. We have confirmed this by measuring the band gap of graphene oxide and reduced graphene oxide indirectly using X-ray absorption near-edge spectroscopy and X-ray emission spectroscopy. Controlling the stacking configuration of multilayered graphene oxide may provide a novel method for tuning its band gap.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.carbon.2013.09.036</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0008-6223 |
ispartof | Carbon (New York), 2014-01, Vol.66, p.539-546 |
issn | 0008-6223 1873-3891 |
language | eng |
recordid | cdi_proquest_miscellaneous_1531008875 |
source | Elsevier ScienceDirect Journals |
subjects | Carbon Fermi level Fermi surfaces Graphene Oxides Spectra Stacking X-rays |
title | Modulation of the band gap of graphene oxide: The role of AA-stacking |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T22%3A43%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modulation%20of%20the%20band%20gap%20of%20graphene%20oxide:%20The%20role%20of%20AA-stacking&rft.jtitle=Carbon%20(New%20York)&rft.au=Hunt,%20A.&rft.date=2014-01&rft.volume=66&rft.spage=539&rft.epage=546&rft.pages=539-546&rft.issn=0008-6223&rft.eissn=1873-3891&rft_id=info:doi/10.1016/j.carbon.2013.09.036&rft_dat=%3Cproquest_cross%3E1531008875%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1475539905&rft_id=info:pmid/&rft_els_id=S0008622313008907&rfr_iscdi=true |