Grain boundary motion and grain growth in zinc in a high magnetic field

The motion of grain boundaries in zinc bicrystals (99.995 %) driven by the “magnetic” driving force was measured. An in situ technique for observations and continuous recording the boundary migration was applied. Planar symmetrical and asymmetrical 10 1 ¯ 0 tilt grain boundaries with rotation angles...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2014-06, Vol.49 (11), p.3875-3884
Hauptverfasser: Molodov, Dmitri A., Günster, Christoph, Gottstein, Günter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3884
container_issue 11
container_start_page 3875
container_title Journal of materials science
container_volume 49
creator Molodov, Dmitri A.
Günster, Christoph
Gottstein, Günter
description The motion of grain boundaries in zinc bicrystals (99.995 %) driven by the “magnetic” driving force was measured. An in situ technique for observations and continuous recording the boundary migration was applied. Planar symmetrical and asymmetrical 10 1 ¯ 0 tilt grain boundaries with rotation angles in the range between 60° and 90° were studied. The boundary migration was measured in the temperature regime between 330 and 415 °C. The mobility of 10 1 ¯ 0 tilt boundaries in zinc and its temperature dependence were found to depend on the misorientation angle and the inclination of the boundary plane. An application of a magnetic field during the annealing of cold rolled (90 %) zinc–1.1 % aluminum alloy sheet specimens substantially affected the texture and microstructure evolution. This effect is attributed to the additional magnetic driving force for grain growth arising due to the magnetic anisotropy of zinc.
doi_str_mv 10.1007/s10853-013-7699-5
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1531008617</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A371000005</galeid><sourcerecordid>A371000005</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-773fdf663a15317bacbd819471744762b11bebf52c324dcc1c81b0eb926287493</originalsourceid><addsrcrecordid>eNp1kVtLxDAQhYMouF5-gG8FX_Shmknapn1cFl0XBMHLc0jTtJulTdakxcuvN7WCrCDzMEPyncMwB6EzwFeAMbv2gPOUxhhozLKiiNM9NIOU0TjJMd1HM4wJiUmSwSE68n6DMU4ZgRlaLp3QJirtYCrhPqLO9tqaSJgqar5_Gmff-nUUpk9t5NhFtNbNOupEY1SvZVRr1VYn6KAWrVenP_0YvdzePC_u4vuH5Woxv49lQkgfM0brqs4yKiClwEohyyqHImHAkoRlpAQoVVmnRFKSVFKCzKHEqixIRnKWFPQYXUy-W2dfB-V73mkvVdsKo-zg-WiLcZ4BC-j5H3RjB2fCdpyQtGC0IDgL1NVENaJVXJva9k7IUJXqtLRG1Tq8zykLtuPVguByRxCYXr33jRi856unx10WJlY6671TNd863YU7c8B8zI1PufGQGx9z46OGTBofWNMo97v2_6IveLmXAw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259739206</pqid></control><display><type>article</type><title>Grain boundary motion and grain growth in zinc in a high magnetic field</title><source>SpringerLink Journals</source><creator>Molodov, Dmitri A. ; Günster, Christoph ; Gottstein, Günter</creator><creatorcontrib>Molodov, Dmitri A. ; Günster, Christoph ; Gottstein, Günter</creatorcontrib><description>The motion of grain boundaries in zinc bicrystals (99.995 %) driven by the “magnetic” driving force was measured. An in situ technique for observations and continuous recording the boundary migration was applied. Planar symmetrical and asymmetrical 10 1 ¯ 0 tilt grain boundaries with rotation angles in the range between 60° and 90° were studied. The boundary migration was measured in the temperature regime between 330 and 415 °C. The mobility of 10 1 ¯ 0 tilt boundaries in zinc and its temperature dependence were found to depend on the misorientation angle and the inclination of the boundary plane. An application of a magnetic field during the annealing of cold rolled (90 %) zinc–1.1 % aluminum alloy sheet specimens substantially affected the texture and microstructure evolution. This effect is attributed to the additional magnetic driving force for grain growth arising due to the magnetic anisotropy of zinc.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-013-7699-5</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Alloys ; Aluminum base alloys ; Annealing ; Attitude (inclination) ; Bicrystals ; Boundaries ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Cold rolling ; Crystallography and Scattering Methods ; Grain boundaries ; Grain growth ; Inclination ; Interfaces and Intergranular Boundaries ; Magnetic anisotropy ; Magnetic fields ; Materials Science ; Metal sheets ; Migration ; Misalignment ; Polymer Sciences ; Recording ; Solid Mechanics ; Surface layer ; Temperature ; Temperature dependence ; Texture ; Tilt boundaries ; Zinc</subject><ispartof>Journal of materials science, 2014-06, Vol.49 (11), p.3875-3884</ispartof><rights>Springer Science+Business Media New York 2013</rights><rights>COPYRIGHT 2014 Springer</rights><rights>Journal of Materials Science is a copyright of Springer, (2013). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-773fdf663a15317bacbd819471744762b11bebf52c324dcc1c81b0eb926287493</citedby><cites>FETCH-LOGICAL-c422t-773fdf663a15317bacbd819471744762b11bebf52c324dcc1c81b0eb926287493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-013-7699-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-013-7699-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Molodov, Dmitri A.</creatorcontrib><creatorcontrib>Günster, Christoph</creatorcontrib><creatorcontrib>Gottstein, Günter</creatorcontrib><title>Grain boundary motion and grain growth in zinc in a high magnetic field</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>The motion of grain boundaries in zinc bicrystals (99.995 %) driven by the “magnetic” driving force was measured. An in situ technique for observations and continuous recording the boundary migration was applied. Planar symmetrical and asymmetrical 10 1 ¯ 0 tilt grain boundaries with rotation angles in the range between 60° and 90° were studied. The boundary migration was measured in the temperature regime between 330 and 415 °C. The mobility of 10 1 ¯ 0 tilt boundaries in zinc and its temperature dependence were found to depend on the misorientation angle and the inclination of the boundary plane. An application of a magnetic field during the annealing of cold rolled (90 %) zinc–1.1 % aluminum alloy sheet specimens substantially affected the texture and microstructure evolution. This effect is attributed to the additional magnetic driving force for grain growth arising due to the magnetic anisotropy of zinc.</description><subject>Alloys</subject><subject>Aluminum base alloys</subject><subject>Annealing</subject><subject>Attitude (inclination)</subject><subject>Bicrystals</subject><subject>Boundaries</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Cold rolling</subject><subject>Crystallography and Scattering Methods</subject><subject>Grain boundaries</subject><subject>Grain growth</subject><subject>Inclination</subject><subject>Interfaces and Intergranular Boundaries</subject><subject>Magnetic anisotropy</subject><subject>Magnetic fields</subject><subject>Materials Science</subject><subject>Metal sheets</subject><subject>Migration</subject><subject>Misalignment</subject><subject>Polymer Sciences</subject><subject>Recording</subject><subject>Solid Mechanics</subject><subject>Surface layer</subject><subject>Temperature</subject><subject>Temperature dependence</subject><subject>Texture</subject><subject>Tilt boundaries</subject><subject>Zinc</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kVtLxDAQhYMouF5-gG8FX_Shmknapn1cFl0XBMHLc0jTtJulTdakxcuvN7WCrCDzMEPyncMwB6EzwFeAMbv2gPOUxhhozLKiiNM9NIOU0TjJMd1HM4wJiUmSwSE68n6DMU4ZgRlaLp3QJirtYCrhPqLO9tqaSJgqar5_Gmff-nUUpk9t5NhFtNbNOupEY1SvZVRr1VYn6KAWrVenP_0YvdzePC_u4vuH5Woxv49lQkgfM0brqs4yKiClwEohyyqHImHAkoRlpAQoVVmnRFKSVFKCzKHEqixIRnKWFPQYXUy-W2dfB-V73mkvVdsKo-zg-WiLcZ4BC-j5H3RjB2fCdpyQtGC0IDgL1NVENaJVXJva9k7IUJXqtLRG1Tq8zykLtuPVguByRxCYXr33jRi856unx10WJlY6671TNd863YU7c8B8zI1PufGQGx9z46OGTBofWNMo97v2_6IveLmXAw</recordid><startdate>20140601</startdate><enddate>20140601</enddate><creator>Molodov, Dmitri A.</creator><creator>Günster, Christoph</creator><creator>Gottstein, Günter</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7QF</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20140601</creationdate><title>Grain boundary motion and grain growth in zinc in a high magnetic field</title><author>Molodov, Dmitri A. ; Günster, Christoph ; Gottstein, Günter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-773fdf663a15317bacbd819471744762b11bebf52c324dcc1c81b0eb926287493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Alloys</topic><topic>Aluminum base alloys</topic><topic>Annealing</topic><topic>Attitude (inclination)</topic><topic>Bicrystals</topic><topic>Boundaries</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Cold rolling</topic><topic>Crystallography and Scattering Methods</topic><topic>Grain boundaries</topic><topic>Grain growth</topic><topic>Inclination</topic><topic>Interfaces and Intergranular Boundaries</topic><topic>Magnetic anisotropy</topic><topic>Magnetic fields</topic><topic>Materials Science</topic><topic>Metal sheets</topic><topic>Migration</topic><topic>Misalignment</topic><topic>Polymer Sciences</topic><topic>Recording</topic><topic>Solid Mechanics</topic><topic>Surface layer</topic><topic>Temperature</topic><topic>Temperature dependence</topic><topic>Texture</topic><topic>Tilt boundaries</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Molodov, Dmitri A.</creatorcontrib><creatorcontrib>Günster, Christoph</creatorcontrib><creatorcontrib>Gottstein, Günter</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Aluminium Industry Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Molodov, Dmitri A.</au><au>Günster, Christoph</au><au>Gottstein, Günter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Grain boundary motion and grain growth in zinc in a high magnetic field</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2014-06-01</date><risdate>2014</risdate><volume>49</volume><issue>11</issue><spage>3875</spage><epage>3884</epage><pages>3875-3884</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>The motion of grain boundaries in zinc bicrystals (99.995 %) driven by the “magnetic” driving force was measured. An in situ technique for observations and continuous recording the boundary migration was applied. Planar symmetrical and asymmetrical 10 1 ¯ 0 tilt grain boundaries with rotation angles in the range between 60° and 90° were studied. The boundary migration was measured in the temperature regime between 330 and 415 °C. The mobility of 10 1 ¯ 0 tilt boundaries in zinc and its temperature dependence were found to depend on the misorientation angle and the inclination of the boundary plane. An application of a magnetic field during the annealing of cold rolled (90 %) zinc–1.1 % aluminum alloy sheet specimens substantially affected the texture and microstructure evolution. This effect is attributed to the additional magnetic driving force for grain growth arising due to the magnetic anisotropy of zinc.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10853-013-7699-5</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2014-06, Vol.49 (11), p.3875-3884
issn 0022-2461
1573-4803
language eng
recordid cdi_proquest_miscellaneous_1531008617
source SpringerLink Journals
subjects Alloys
Aluminum base alloys
Annealing
Attitude (inclination)
Bicrystals
Boundaries
Characterization and Evaluation of Materials
Chemistry and Materials Science
Classical Mechanics
Cold rolling
Crystallography and Scattering Methods
Grain boundaries
Grain growth
Inclination
Interfaces and Intergranular Boundaries
Magnetic anisotropy
Magnetic fields
Materials Science
Metal sheets
Migration
Misalignment
Polymer Sciences
Recording
Solid Mechanics
Surface layer
Temperature
Temperature dependence
Texture
Tilt boundaries
Zinc
title Grain boundary motion and grain growth in zinc in a high magnetic field
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T04%3A57%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Grain%20boundary%20motion%20and%20grain%20growth%20in%20zinc%20in%20a%20high%20magnetic%20field&rft.jtitle=Journal%20of%20materials%20science&rft.au=Molodov,%20Dmitri%20A.&rft.date=2014-06-01&rft.volume=49&rft.issue=11&rft.spage=3875&rft.epage=3884&rft.pages=3875-3884&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-013-7699-5&rft_dat=%3Cgale_proqu%3EA371000005%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259739206&rft_id=info:pmid/&rft_galeid=A371000005&rfr_iscdi=true