Grain boundary motion and grain growth in zinc in a high magnetic field
The motion of grain boundaries in zinc bicrystals (99.995 %) driven by the “magnetic” driving force was measured. An in situ technique for observations and continuous recording the boundary migration was applied. Planar symmetrical and asymmetrical 10 1 ¯ 0 tilt grain boundaries with rotation angles...
Gespeichert in:
Veröffentlicht in: | Journal of materials science 2014-06, Vol.49 (11), p.3875-3884 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3884 |
---|---|
container_issue | 11 |
container_start_page | 3875 |
container_title | Journal of materials science |
container_volume | 49 |
creator | Molodov, Dmitri A. Günster, Christoph Gottstein, Günter |
description | The motion of grain boundaries in zinc bicrystals (99.995 %) driven by the “magnetic” driving force was measured. An in situ technique for observations and continuous recording the boundary migration was applied. Planar symmetrical and asymmetrical
10
1
¯
0
tilt grain boundaries with rotation angles in the range between 60° and 90° were studied. The boundary migration was measured in the temperature regime between 330 and 415 °C. The mobility of
10
1
¯
0
tilt boundaries in zinc and its temperature dependence were found to depend on the misorientation angle and the inclination of the boundary plane. An application of a magnetic field during the annealing of cold rolled (90 %) zinc–1.1 % aluminum alloy sheet specimens substantially affected the texture and microstructure evolution. This effect is attributed to the additional magnetic driving force for grain growth arising due to the magnetic anisotropy of zinc. |
doi_str_mv | 10.1007/s10853-013-7699-5 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1531008617</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A371000005</galeid><sourcerecordid>A371000005</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-773fdf663a15317bacbd819471744762b11bebf52c324dcc1c81b0eb926287493</originalsourceid><addsrcrecordid>eNp1kVtLxDAQhYMouF5-gG8FX_Shmknapn1cFl0XBMHLc0jTtJulTdakxcuvN7WCrCDzMEPyncMwB6EzwFeAMbv2gPOUxhhozLKiiNM9NIOU0TjJMd1HM4wJiUmSwSE68n6DMU4ZgRlaLp3QJirtYCrhPqLO9tqaSJgqar5_Gmff-nUUpk9t5NhFtNbNOupEY1SvZVRr1VYn6KAWrVenP_0YvdzePC_u4vuH5Woxv49lQkgfM0brqs4yKiClwEohyyqHImHAkoRlpAQoVVmnRFKSVFKCzKHEqixIRnKWFPQYXUy-W2dfB-V73mkvVdsKo-zg-WiLcZ4BC-j5H3RjB2fCdpyQtGC0IDgL1NVENaJVXJva9k7IUJXqtLRG1Tq8zykLtuPVguByRxCYXr33jRi856unx10WJlY6671TNd863YU7c8B8zI1PufGQGx9z46OGTBofWNMo97v2_6IveLmXAw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259739206</pqid></control><display><type>article</type><title>Grain boundary motion and grain growth in zinc in a high magnetic field</title><source>SpringerLink Journals</source><creator>Molodov, Dmitri A. ; Günster, Christoph ; Gottstein, Günter</creator><creatorcontrib>Molodov, Dmitri A. ; Günster, Christoph ; Gottstein, Günter</creatorcontrib><description>The motion of grain boundaries in zinc bicrystals (99.995 %) driven by the “magnetic” driving force was measured. An in situ technique for observations and continuous recording the boundary migration was applied. Planar symmetrical and asymmetrical
10
1
¯
0
tilt grain boundaries with rotation angles in the range between 60° and 90° were studied. The boundary migration was measured in the temperature regime between 330 and 415 °C. The mobility of
10
1
¯
0
tilt boundaries in zinc and its temperature dependence were found to depend on the misorientation angle and the inclination of the boundary plane. An application of a magnetic field during the annealing of cold rolled (90 %) zinc–1.1 % aluminum alloy sheet specimens substantially affected the texture and microstructure evolution. This effect is attributed to the additional magnetic driving force for grain growth arising due to the magnetic anisotropy of zinc.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-013-7699-5</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Alloys ; Aluminum base alloys ; Annealing ; Attitude (inclination) ; Bicrystals ; Boundaries ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Cold rolling ; Crystallography and Scattering Methods ; Grain boundaries ; Grain growth ; Inclination ; Interfaces and Intergranular Boundaries ; Magnetic anisotropy ; Magnetic fields ; Materials Science ; Metal sheets ; Migration ; Misalignment ; Polymer Sciences ; Recording ; Solid Mechanics ; Surface layer ; Temperature ; Temperature dependence ; Texture ; Tilt boundaries ; Zinc</subject><ispartof>Journal of materials science, 2014-06, Vol.49 (11), p.3875-3884</ispartof><rights>Springer Science+Business Media New York 2013</rights><rights>COPYRIGHT 2014 Springer</rights><rights>Journal of Materials Science is a copyright of Springer, (2013). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-773fdf663a15317bacbd819471744762b11bebf52c324dcc1c81b0eb926287493</citedby><cites>FETCH-LOGICAL-c422t-773fdf663a15317bacbd819471744762b11bebf52c324dcc1c81b0eb926287493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-013-7699-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-013-7699-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Molodov, Dmitri A.</creatorcontrib><creatorcontrib>Günster, Christoph</creatorcontrib><creatorcontrib>Gottstein, Günter</creatorcontrib><title>Grain boundary motion and grain growth in zinc in a high magnetic field</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>The motion of grain boundaries in zinc bicrystals (99.995 %) driven by the “magnetic” driving force was measured. An in situ technique for observations and continuous recording the boundary migration was applied. Planar symmetrical and asymmetrical
10
1
¯
0
tilt grain boundaries with rotation angles in the range between 60° and 90° were studied. The boundary migration was measured in the temperature regime between 330 and 415 °C. The mobility of
10
1
¯
0
tilt boundaries in zinc and its temperature dependence were found to depend on the misorientation angle and the inclination of the boundary plane. An application of a magnetic field during the annealing of cold rolled (90 %) zinc–1.1 % aluminum alloy sheet specimens substantially affected the texture and microstructure evolution. This effect is attributed to the additional magnetic driving force for grain growth arising due to the magnetic anisotropy of zinc.</description><subject>Alloys</subject><subject>Aluminum base alloys</subject><subject>Annealing</subject><subject>Attitude (inclination)</subject><subject>Bicrystals</subject><subject>Boundaries</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Cold rolling</subject><subject>Crystallography and Scattering Methods</subject><subject>Grain boundaries</subject><subject>Grain growth</subject><subject>Inclination</subject><subject>Interfaces and Intergranular Boundaries</subject><subject>Magnetic anisotropy</subject><subject>Magnetic fields</subject><subject>Materials Science</subject><subject>Metal sheets</subject><subject>Migration</subject><subject>Misalignment</subject><subject>Polymer Sciences</subject><subject>Recording</subject><subject>Solid Mechanics</subject><subject>Surface layer</subject><subject>Temperature</subject><subject>Temperature dependence</subject><subject>Texture</subject><subject>Tilt boundaries</subject><subject>Zinc</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kVtLxDAQhYMouF5-gG8FX_Shmknapn1cFl0XBMHLc0jTtJulTdakxcuvN7WCrCDzMEPyncMwB6EzwFeAMbv2gPOUxhhozLKiiNM9NIOU0TjJMd1HM4wJiUmSwSE68n6DMU4ZgRlaLp3QJirtYCrhPqLO9tqaSJgqar5_Gmff-nUUpk9t5NhFtNbNOupEY1SvZVRr1VYn6KAWrVenP_0YvdzePC_u4vuH5Woxv49lQkgfM0brqs4yKiClwEohyyqHImHAkoRlpAQoVVmnRFKSVFKCzKHEqixIRnKWFPQYXUy-W2dfB-V73mkvVdsKo-zg-WiLcZ4BC-j5H3RjB2fCdpyQtGC0IDgL1NVENaJVXJva9k7IUJXqtLRG1Tq8zykLtuPVguByRxCYXr33jRi856unx10WJlY6671TNd863YU7c8B8zI1PufGQGx9z46OGTBofWNMo97v2_6IveLmXAw</recordid><startdate>20140601</startdate><enddate>20140601</enddate><creator>Molodov, Dmitri A.</creator><creator>Günster, Christoph</creator><creator>Gottstein, Günter</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7QF</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20140601</creationdate><title>Grain boundary motion and grain growth in zinc in a high magnetic field</title><author>Molodov, Dmitri A. ; Günster, Christoph ; Gottstein, Günter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-773fdf663a15317bacbd819471744762b11bebf52c324dcc1c81b0eb926287493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Alloys</topic><topic>Aluminum base alloys</topic><topic>Annealing</topic><topic>Attitude (inclination)</topic><topic>Bicrystals</topic><topic>Boundaries</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Cold rolling</topic><topic>Crystallography and Scattering Methods</topic><topic>Grain boundaries</topic><topic>Grain growth</topic><topic>Inclination</topic><topic>Interfaces and Intergranular Boundaries</topic><topic>Magnetic anisotropy</topic><topic>Magnetic fields</topic><topic>Materials Science</topic><topic>Metal sheets</topic><topic>Migration</topic><topic>Misalignment</topic><topic>Polymer Sciences</topic><topic>Recording</topic><topic>Solid Mechanics</topic><topic>Surface layer</topic><topic>Temperature</topic><topic>Temperature dependence</topic><topic>Texture</topic><topic>Tilt boundaries</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Molodov, Dmitri A.</creatorcontrib><creatorcontrib>Günster, Christoph</creatorcontrib><creatorcontrib>Gottstein, Günter</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Aluminium Industry Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Molodov, Dmitri A.</au><au>Günster, Christoph</au><au>Gottstein, Günter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Grain boundary motion and grain growth in zinc in a high magnetic field</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2014-06-01</date><risdate>2014</risdate><volume>49</volume><issue>11</issue><spage>3875</spage><epage>3884</epage><pages>3875-3884</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>The motion of grain boundaries in zinc bicrystals (99.995 %) driven by the “magnetic” driving force was measured. An in situ technique for observations and continuous recording the boundary migration was applied. Planar symmetrical and asymmetrical
10
1
¯
0
tilt grain boundaries with rotation angles in the range between 60° and 90° were studied. The boundary migration was measured in the temperature regime between 330 and 415 °C. The mobility of
10
1
¯
0
tilt boundaries in zinc and its temperature dependence were found to depend on the misorientation angle and the inclination of the boundary plane. An application of a magnetic field during the annealing of cold rolled (90 %) zinc–1.1 % aluminum alloy sheet specimens substantially affected the texture and microstructure evolution. This effect is attributed to the additional magnetic driving force for grain growth arising due to the magnetic anisotropy of zinc.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10853-013-7699-5</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2461 |
ispartof | Journal of materials science, 2014-06, Vol.49 (11), p.3875-3884 |
issn | 0022-2461 1573-4803 |
language | eng |
recordid | cdi_proquest_miscellaneous_1531008617 |
source | SpringerLink Journals |
subjects | Alloys Aluminum base alloys Annealing Attitude (inclination) Bicrystals Boundaries Characterization and Evaluation of Materials Chemistry and Materials Science Classical Mechanics Cold rolling Crystallography and Scattering Methods Grain boundaries Grain growth Inclination Interfaces and Intergranular Boundaries Magnetic anisotropy Magnetic fields Materials Science Metal sheets Migration Misalignment Polymer Sciences Recording Solid Mechanics Surface layer Temperature Temperature dependence Texture Tilt boundaries Zinc |
title | Grain boundary motion and grain growth in zinc in a high magnetic field |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T04%3A57%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Grain%20boundary%20motion%20and%20grain%20growth%20in%20zinc%20in%20a%20high%20magnetic%20field&rft.jtitle=Journal%20of%20materials%20science&rft.au=Molodov,%20Dmitri%20A.&rft.date=2014-06-01&rft.volume=49&rft.issue=11&rft.spage=3875&rft.epage=3884&rft.pages=3875-3884&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-013-7699-5&rft_dat=%3Cgale_proqu%3EA371000005%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259739206&rft_id=info:pmid/&rft_galeid=A371000005&rfr_iscdi=true |