Systems of generators for ideals of algebra of convergent differential series

Differential algebra of convergent power series that depend on an arbitrary finite number of variables is considered. The concept of a passive family of generators is defined for a differential ideal of this algebra. It is a further extension of the concept of the Groebner basis. The theorem that al...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Programming and computer software 2014-03, Vol.40 (2), p.63-70
1. Verfasser: Kaptsov, O. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 70
container_issue 2
container_start_page 63
container_title Programming and computer software
container_volume 40
creator Kaptsov, O. V.
description Differential algebra of convergent power series that depend on an arbitrary finite number of variables is considered. The concept of a passive family of generators is defined for a differential ideal of this algebra. It is a further extension of the concept of the Groebner basis. The theorem that allows checking whether a family of generators is passive and ensures that the point solution of an infinite system of equations exists and is unique in this algebra is proved.
doi_str_mv 10.1134/S0361768814020054
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1531006096</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918493643</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-9ee11678eede1d131304b4742e00973b5e7c29026804dfe4839d35c98664922f3</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYMouK5-AG8FL16qM0maJkdZ_AcrHlbPJdtOli7dZk26gt_e1BUExdM8eL_3mBnGzhGuEIW8XoBQWCqtUQIHKOQBm6ACnQuu8JBNRjsf_WN2EuMaAAGknLCnxUccaBMz77IV9RTs4EPMnA9Z25DtvgzbrWgZ7Chr379TSOSQNa1zFJJqbZdFCi3FU3bkUobOvueUvd7dvswe8vnz_ePsZp7XQpohN0SIqtREDWGDAgXIpSwlJwBTimVBZc0NcKVBNo6kFqYRRW20UtJw7sSUXe57t8G_7SgO1aaNNXWd7cnvYoWFSPcpMCqhF7_Qtd-FPm1XcYNaGqGkSBTuqTr4GAO5ahvajQ0fFUI1Prj68-CU4ftMTGy_ovDT_H_oE-pnets</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918493643</pqid></control><display><type>article</type><title>Systems of generators for ideals of algebra of convergent differential series</title><source>Springer Nature - Complete Springer Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Kaptsov, O. V.</creator><creatorcontrib>Kaptsov, O. V.</creatorcontrib><description>Differential algebra of convergent power series that depend on an arbitrary finite number of variables is considered. The concept of a passive family of generators is defined for a differential ideal of this algebra. It is a further extension of the concept of the Groebner basis. The theorem that allows checking whether a family of generators is passive and ensures that the point solution of an infinite system of equations exists and is unique in this algebra is proved.</description><identifier>ISSN: 0361-7688</identifier><identifier>EISSN: 1608-3261</identifier><identifier>DOI: 10.1134/S0361768814020054</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algebra ; Artificial Intelligence ; Computer programs ; Computer Science ; Convergence ; Generators ; Mathematical analysis ; Mathematical models ; Operating Systems ; Power series ; Programming ; Rings (mathematics) ; Software ; Software Engineering ; Software Engineering/Programming and Operating Systems</subject><ispartof>Programming and computer software, 2014-03, Vol.40 (2), p.63-70</ispartof><rights>Pleiades Publishing, Ltd. 2014</rights><rights>Pleiades Publishing, Ltd. 2014.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-9ee11678eede1d131304b4742e00973b5e7c29026804dfe4839d35c98664922f3</citedby><cites>FETCH-LOGICAL-c349t-9ee11678eede1d131304b4742e00973b5e7c29026804dfe4839d35c98664922f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0361768814020054$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918493643?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,777,781,21369,27905,27906,33725,33726,41469,42538,43786,51300,64364,64366,64368,72218</link.rule.ids></links><search><creatorcontrib>Kaptsov, O. V.</creatorcontrib><title>Systems of generators for ideals of algebra of convergent differential series</title><title>Programming and computer software</title><addtitle>Program Comput Soft</addtitle><description>Differential algebra of convergent power series that depend on an arbitrary finite number of variables is considered. The concept of a passive family of generators is defined for a differential ideal of this algebra. It is a further extension of the concept of the Groebner basis. The theorem that allows checking whether a family of generators is passive and ensures that the point solution of an infinite system of equations exists and is unique in this algebra is proved.</description><subject>Algebra</subject><subject>Artificial Intelligence</subject><subject>Computer programs</subject><subject>Computer Science</subject><subject>Convergence</subject><subject>Generators</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Operating Systems</subject><subject>Power series</subject><subject>Programming</subject><subject>Rings (mathematics)</subject><subject>Software</subject><subject>Software Engineering</subject><subject>Software Engineering/Programming and Operating Systems</subject><issn>0361-7688</issn><issn>1608-3261</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE9LxDAQxYMouK5-AG8FL16qM0maJkdZ_AcrHlbPJdtOli7dZk26gt_e1BUExdM8eL_3mBnGzhGuEIW8XoBQWCqtUQIHKOQBm6ACnQuu8JBNRjsf_WN2EuMaAAGknLCnxUccaBMz77IV9RTs4EPMnA9Z25DtvgzbrWgZ7Chr379TSOSQNa1zFJJqbZdFCi3FU3bkUobOvueUvd7dvswe8vnz_ePsZp7XQpohN0SIqtREDWGDAgXIpSwlJwBTimVBZc0NcKVBNo6kFqYRRW20UtJw7sSUXe57t8G_7SgO1aaNNXWd7cnvYoWFSPcpMCqhF7_Qtd-FPm1XcYNaGqGkSBTuqTr4GAO5ahvajQ0fFUI1Prj68-CU4ftMTGy_ovDT_H_oE-pnets</recordid><startdate>20140301</startdate><enddate>20140301</enddate><creator>Kaptsov, O. V.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7SC</scope><scope>8FD</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140301</creationdate><title>Systems of generators for ideals of algebra of convergent differential series</title><author>Kaptsov, O. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-9ee11678eede1d131304b4742e00973b5e7c29026804dfe4839d35c98664922f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algebra</topic><topic>Artificial Intelligence</topic><topic>Computer programs</topic><topic>Computer Science</topic><topic>Convergence</topic><topic>Generators</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Operating Systems</topic><topic>Power series</topic><topic>Programming</topic><topic>Rings (mathematics)</topic><topic>Software</topic><topic>Software Engineering</topic><topic>Software Engineering/Programming and Operating Systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kaptsov, O. V.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Programming and computer software</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kaptsov, O. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Systems of generators for ideals of algebra of convergent differential series</atitle><jtitle>Programming and computer software</jtitle><stitle>Program Comput Soft</stitle><date>2014-03-01</date><risdate>2014</risdate><volume>40</volume><issue>2</issue><spage>63</spage><epage>70</epage><pages>63-70</pages><issn>0361-7688</issn><eissn>1608-3261</eissn><abstract>Differential algebra of convergent power series that depend on an arbitrary finite number of variables is considered. The concept of a passive family of generators is defined for a differential ideal of this algebra. It is a further extension of the concept of the Groebner basis. The theorem that allows checking whether a family of generators is passive and ensures that the point solution of an infinite system of equations exists and is unique in this algebra is proved.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0361768814020054</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0361-7688
ispartof Programming and computer software, 2014-03, Vol.40 (2), p.63-70
issn 0361-7688
1608-3261
language eng
recordid cdi_proquest_miscellaneous_1531006096
source Springer Nature - Complete Springer Journals; ProQuest Central UK/Ireland; ProQuest Central
subjects Algebra
Artificial Intelligence
Computer programs
Computer Science
Convergence
Generators
Mathematical analysis
Mathematical models
Operating Systems
Power series
Programming
Rings (mathematics)
Software
Software Engineering
Software Engineering/Programming and Operating Systems
title Systems of generators for ideals of algebra of convergent differential series
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T06%3A29%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Systems%20of%20generators%20for%20ideals%20of%20algebra%20of%20convergent%20differential%20series&rft.jtitle=Programming%20and%20computer%20software&rft.au=Kaptsov,%20O.%20V.&rft.date=2014-03-01&rft.volume=40&rft.issue=2&rft.spage=63&rft.epage=70&rft.pages=63-70&rft.issn=0361-7688&rft.eissn=1608-3261&rft_id=info:doi/10.1134/S0361768814020054&rft_dat=%3Cproquest_cross%3E2918493643%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918493643&rft_id=info:pmid/&rfr_iscdi=true