Systems of generators for ideals of algebra of convergent differential series
Differential algebra of convergent power series that depend on an arbitrary finite number of variables is considered. The concept of a passive family of generators is defined for a differential ideal of this algebra. It is a further extension of the concept of the Groebner basis. The theorem that al...
Gespeichert in:
Veröffentlicht in: | Programming and computer software 2014-03, Vol.40 (2), p.63-70 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 70 |
---|---|
container_issue | 2 |
container_start_page | 63 |
container_title | Programming and computer software |
container_volume | 40 |
creator | Kaptsov, O. V. |
description | Differential algebra of convergent power series that depend on an arbitrary finite number of variables is considered. The concept of a passive family of generators is defined for a differential ideal of this algebra. It is a further extension of the concept of the Groebner basis. The theorem that allows checking whether a family of generators is passive and ensures that the point solution of an infinite system of equations exists and is unique in this algebra is proved. |
doi_str_mv | 10.1134/S0361768814020054 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1531006096</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918493643</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-9ee11678eede1d131304b4742e00973b5e7c29026804dfe4839d35c98664922f3</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYMouK5-AG8FL16qM0maJkdZ_AcrHlbPJdtOli7dZk26gt_e1BUExdM8eL_3mBnGzhGuEIW8XoBQWCqtUQIHKOQBm6ACnQuu8JBNRjsf_WN2EuMaAAGknLCnxUccaBMz77IV9RTs4EPMnA9Z25DtvgzbrWgZ7Chr379TSOSQNa1zFJJqbZdFCi3FU3bkUobOvueUvd7dvswe8vnz_ePsZp7XQpohN0SIqtREDWGDAgXIpSwlJwBTimVBZc0NcKVBNo6kFqYRRW20UtJw7sSUXe57t8G_7SgO1aaNNXWd7cnvYoWFSPcpMCqhF7_Qtd-FPm1XcYNaGqGkSBTuqTr4GAO5ahvajQ0fFUI1Prj68-CU4ftMTGy_ovDT_H_oE-pnets</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918493643</pqid></control><display><type>article</type><title>Systems of generators for ideals of algebra of convergent differential series</title><source>Springer Nature - Complete Springer Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Kaptsov, O. V.</creator><creatorcontrib>Kaptsov, O. V.</creatorcontrib><description>Differential algebra of convergent power series that depend on an arbitrary finite number of variables is considered. The concept of a passive family of generators is defined for a differential ideal of this algebra. It is a further extension of the concept of the Groebner basis. The theorem that allows checking whether a family of generators is passive and ensures that the point solution of an infinite system of equations exists and is unique in this algebra is proved.</description><identifier>ISSN: 0361-7688</identifier><identifier>EISSN: 1608-3261</identifier><identifier>DOI: 10.1134/S0361768814020054</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algebra ; Artificial Intelligence ; Computer programs ; Computer Science ; Convergence ; Generators ; Mathematical analysis ; Mathematical models ; Operating Systems ; Power series ; Programming ; Rings (mathematics) ; Software ; Software Engineering ; Software Engineering/Programming and Operating Systems</subject><ispartof>Programming and computer software, 2014-03, Vol.40 (2), p.63-70</ispartof><rights>Pleiades Publishing, Ltd. 2014</rights><rights>Pleiades Publishing, Ltd. 2014.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-9ee11678eede1d131304b4742e00973b5e7c29026804dfe4839d35c98664922f3</citedby><cites>FETCH-LOGICAL-c349t-9ee11678eede1d131304b4742e00973b5e7c29026804dfe4839d35c98664922f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0361768814020054$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918493643?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,777,781,21369,27905,27906,33725,33726,41469,42538,43786,51300,64364,64366,64368,72218</link.rule.ids></links><search><creatorcontrib>Kaptsov, O. V.</creatorcontrib><title>Systems of generators for ideals of algebra of convergent differential series</title><title>Programming and computer software</title><addtitle>Program Comput Soft</addtitle><description>Differential algebra of convergent power series that depend on an arbitrary finite number of variables is considered. The concept of a passive family of generators is defined for a differential ideal of this algebra. It is a further extension of the concept of the Groebner basis. The theorem that allows checking whether a family of generators is passive and ensures that the point solution of an infinite system of equations exists and is unique in this algebra is proved.</description><subject>Algebra</subject><subject>Artificial Intelligence</subject><subject>Computer programs</subject><subject>Computer Science</subject><subject>Convergence</subject><subject>Generators</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Operating Systems</subject><subject>Power series</subject><subject>Programming</subject><subject>Rings (mathematics)</subject><subject>Software</subject><subject>Software Engineering</subject><subject>Software Engineering/Programming and Operating Systems</subject><issn>0361-7688</issn><issn>1608-3261</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE9LxDAQxYMouK5-AG8FL16qM0maJkdZ_AcrHlbPJdtOli7dZk26gt_e1BUExdM8eL_3mBnGzhGuEIW8XoBQWCqtUQIHKOQBm6ACnQuu8JBNRjsf_WN2EuMaAAGknLCnxUccaBMz77IV9RTs4EPMnA9Z25DtvgzbrWgZ7Chr379TSOSQNa1zFJJqbZdFCi3FU3bkUobOvueUvd7dvswe8vnz_ePsZp7XQpohN0SIqtREDWGDAgXIpSwlJwBTimVBZc0NcKVBNo6kFqYRRW20UtJw7sSUXe57t8G_7SgO1aaNNXWd7cnvYoWFSPcpMCqhF7_Qtd-FPm1XcYNaGqGkSBTuqTr4GAO5ahvajQ0fFUI1Prj68-CU4ftMTGy_ovDT_H_oE-pnets</recordid><startdate>20140301</startdate><enddate>20140301</enddate><creator>Kaptsov, O. V.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7SC</scope><scope>8FD</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140301</creationdate><title>Systems of generators for ideals of algebra of convergent differential series</title><author>Kaptsov, O. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-9ee11678eede1d131304b4742e00973b5e7c29026804dfe4839d35c98664922f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algebra</topic><topic>Artificial Intelligence</topic><topic>Computer programs</topic><topic>Computer Science</topic><topic>Convergence</topic><topic>Generators</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Operating Systems</topic><topic>Power series</topic><topic>Programming</topic><topic>Rings (mathematics)</topic><topic>Software</topic><topic>Software Engineering</topic><topic>Software Engineering/Programming and Operating Systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kaptsov, O. V.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Programming and computer software</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kaptsov, O. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Systems of generators for ideals of algebra of convergent differential series</atitle><jtitle>Programming and computer software</jtitle><stitle>Program Comput Soft</stitle><date>2014-03-01</date><risdate>2014</risdate><volume>40</volume><issue>2</issue><spage>63</spage><epage>70</epage><pages>63-70</pages><issn>0361-7688</issn><eissn>1608-3261</eissn><abstract>Differential algebra of convergent power series that depend on an arbitrary finite number of variables is considered. The concept of a passive family of generators is defined for a differential ideal of this algebra. It is a further extension of the concept of the Groebner basis. The theorem that allows checking whether a family of generators is passive and ensures that the point solution of an infinite system of equations exists and is unique in this algebra is proved.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0361768814020054</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0361-7688 |
ispartof | Programming and computer software, 2014-03, Vol.40 (2), p.63-70 |
issn | 0361-7688 1608-3261 |
language | eng |
recordid | cdi_proquest_miscellaneous_1531006096 |
source | Springer Nature - Complete Springer Journals; ProQuest Central UK/Ireland; ProQuest Central |
subjects | Algebra Artificial Intelligence Computer programs Computer Science Convergence Generators Mathematical analysis Mathematical models Operating Systems Power series Programming Rings (mathematics) Software Software Engineering Software Engineering/Programming and Operating Systems |
title | Systems of generators for ideals of algebra of convergent differential series |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T06%3A29%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Systems%20of%20generators%20for%20ideals%20of%20algebra%20of%20convergent%20differential%20series&rft.jtitle=Programming%20and%20computer%20software&rft.au=Kaptsov,%20O.%20V.&rft.date=2014-03-01&rft.volume=40&rft.issue=2&rft.spage=63&rft.epage=70&rft.pages=63-70&rft.issn=0361-7688&rft.eissn=1608-3261&rft_id=info:doi/10.1134/S0361768814020054&rft_dat=%3Cproquest_cross%3E2918493643%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918493643&rft_id=info:pmid/&rfr_iscdi=true |