Progress of international program on hydrogen production with the copper–chlorine cycle

This paper highlights and discusses the recent advances in thermochemical hydrogen production with the copper–chlorine (Cu–Cl) cycle. Extended operation of HCl/CuCl electrolysis is achieved, and its performance assessment is conducted. Advances in the development of improved electrodes are presented...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of hydrogen energy 2014-02, Vol.39 (6), p.2431-2445
Hauptverfasser: Naterer, G.F., Suppiah, S., Stolberg, L., Lewis, M., Ahmed, S., Wang, Z., Rosen, M.A., Dincer, I., Gabriel, K., Secnik, E., Easton, E.B., Lvov, S.N., Papangelakis, V., Odukoya, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2445
container_issue 6
container_start_page 2431
container_title International journal of hydrogen energy
container_volume 39
creator Naterer, G.F.
Suppiah, S.
Stolberg, L.
Lewis, M.
Ahmed, S.
Wang, Z.
Rosen, M.A.
Dincer, I.
Gabriel, K.
Secnik, E.
Easton, E.B.
Lvov, S.N.
Papangelakis, V.
Odukoya, A.
description This paper highlights and discusses the recent advances in thermochemical hydrogen production with the copper–chlorine (Cu–Cl) cycle. Extended operation of HCl/CuCl electrolysis is achieved, and its performance assessment is conducted. Advances in the development of improved electrodes are presented for various electrode materials. Experimental studies for a 300 cm2 electrolytic cell show a stable current density and production at 98% of the theoretical hydrogen production rate. Long term testing of the electrolyzer for over 1600 h also shows a stable cell voltage. Different systems to address integration challenges are also examined for the integration of electrolysis/hydrolysis and thermolysis/electrolysis processes. New results from experiments for CuCl–HCl–H2O and CuCl2–HCl–H2O ternary systems are presented along with solubility data for CuCl in HCl–H2O mixtures between 298 and 363 K. A parametric study of multi-generation energy systems incorporating the Cu–Cl cycle is presented with an overall energy efficiency as high as 57% and exergy efficiency of hydrogen production up to 90%. •Recent advances in thermochemical hydrogen production with the Cu–Cl cycle.•Performance of CuCl/HCl electrolytic cell for over 1600 h of operation.•Improved electrodes and results for Silane and 2 Nafion/polypyrrole membranes.•Multi-generation integrated Cu–Cl cycle and improvements of the exergetic efficiency.
doi_str_mv 10.1016/j.ijhydene.2013.11.073
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1531005372</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360319913027985</els_id><sourcerecordid>1531005372</sourcerecordid><originalsourceid>FETCH-LOGICAL-c460t-2fb3ce86c12284cd2eb4e3539147e8a095293c2b9bdab7fd2f2019abd0f9c6b3</originalsourceid><addsrcrecordid>eNqFkM1OwzAMxyMEEmPwCqgXJC4t-eja5gaa-JImwWEXTlHquixTl4ykA-3GO_CGPAmpNrhysmz_7L_9J-Sc0YxRVlwtM7NcbBu0mHHKRMZYRktxQEasKmUq8qo8JCMqCpoKJuUxOQlhSSkraS5H5OXZu1ePISSuTYzt0VvdG2d1l6yHjl4lziZxfUzQDrVmAwOQfJh-kfQLTMCt1-i_P79g0TlvbKxsocNTctTqLuDZPo7J_O52Pn1IZ0_3j9ObWQp5QfuUt7UArApgnFc5NBzrHMVESJaXWGkqJ1wK4LWsG12XbcPb-KTUdUNbCUUtxuRytzae9rbB0KuVCYBdpy26TVBsIhilE1HyiBY7FLwLwWOr1t6stN8qRtVgpVqqXyvVYKViTEUr4-DFXkMH0F3rtQUT_qZ5JQpR8TJy1zsO47_vBr0KYNACNsYj9Kpx5j-pHxcWkH4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1531005372</pqid></control><display><type>article</type><title>Progress of international program on hydrogen production with the copper–chlorine cycle</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Naterer, G.F. ; Suppiah, S. ; Stolberg, L. ; Lewis, M. ; Ahmed, S. ; Wang, Z. ; Rosen, M.A. ; Dincer, I. ; Gabriel, K. ; Secnik, E. ; Easton, E.B. ; Lvov, S.N. ; Papangelakis, V. ; Odukoya, A.</creator><creatorcontrib>Naterer, G.F. ; Suppiah, S. ; Stolberg, L. ; Lewis, M. ; Ahmed, S. ; Wang, Z. ; Rosen, M.A. ; Dincer, I. ; Gabriel, K. ; Secnik, E. ; Easton, E.B. ; Lvov, S.N. ; Papangelakis, V. ; Odukoya, A.</creatorcontrib><description>This paper highlights and discusses the recent advances in thermochemical hydrogen production with the copper–chlorine (Cu–Cl) cycle. Extended operation of HCl/CuCl electrolysis is achieved, and its performance assessment is conducted. Advances in the development of improved electrodes are presented for various electrode materials. Experimental studies for a 300 cm2 electrolytic cell show a stable current density and production at 98% of the theoretical hydrogen production rate. Long term testing of the electrolyzer for over 1600 h also shows a stable cell voltage. Different systems to address integration challenges are also examined for the integration of electrolysis/hydrolysis and thermolysis/electrolysis processes. New results from experiments for CuCl–HCl–H2O and CuCl2–HCl–H2O ternary systems are presented along with solubility data for CuCl in HCl–H2O mixtures between 298 and 363 K. A parametric study of multi-generation energy systems incorporating the Cu–Cl cycle is presented with an overall energy efficiency as high as 57% and exergy efficiency of hydrogen production up to 90%. •Recent advances in thermochemical hydrogen production with the Cu–Cl cycle.•Performance of CuCl/HCl electrolytic cell for over 1600 h of operation.•Improved electrodes and results for Silane and 2 Nafion/polypyrrole membranes.•Multi-generation integrated Cu–Cl cycle and improvements of the exergetic efficiency.</description><identifier>ISSN: 0360-3199</identifier><identifier>EISSN: 1879-3487</identifier><identifier>DOI: 10.1016/j.ijhydene.2013.11.073</identifier><identifier>CODEN: IJHEDX</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Alternative fuels. Production and utilization ; Applied sciences ; Copper ; Copper–chlorine cycle ; Electrodes ; Electrolysis ; Electrolytic cells ; Energy ; Energy management ; Exact sciences and technology ; Fuels ; Hydrogen ; Hydrogen production ; Hydrogen-based energy ; Hydrolysis ; Nuclear energy ; Thermochemical hydrogen production ; Thermolysis ; Voltage</subject><ispartof>International journal of hydrogen energy, 2014-02, Vol.39 (6), p.2431-2445</ispartof><rights>2013 Hydrogen Energy Publications, LLC.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c460t-2fb3ce86c12284cd2eb4e3539147e8a095293c2b9bdab7fd2f2019abd0f9c6b3</citedby><cites>FETCH-LOGICAL-c460t-2fb3ce86c12284cd2eb4e3539147e8a095293c2b9bdab7fd2f2019abd0f9c6b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijhydene.2013.11.073$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28363827$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Naterer, G.F.</creatorcontrib><creatorcontrib>Suppiah, S.</creatorcontrib><creatorcontrib>Stolberg, L.</creatorcontrib><creatorcontrib>Lewis, M.</creatorcontrib><creatorcontrib>Ahmed, S.</creatorcontrib><creatorcontrib>Wang, Z.</creatorcontrib><creatorcontrib>Rosen, M.A.</creatorcontrib><creatorcontrib>Dincer, I.</creatorcontrib><creatorcontrib>Gabriel, K.</creatorcontrib><creatorcontrib>Secnik, E.</creatorcontrib><creatorcontrib>Easton, E.B.</creatorcontrib><creatorcontrib>Lvov, S.N.</creatorcontrib><creatorcontrib>Papangelakis, V.</creatorcontrib><creatorcontrib>Odukoya, A.</creatorcontrib><title>Progress of international program on hydrogen production with the copper–chlorine cycle</title><title>International journal of hydrogen energy</title><description>This paper highlights and discusses the recent advances in thermochemical hydrogen production with the copper–chlorine (Cu–Cl) cycle. Extended operation of HCl/CuCl electrolysis is achieved, and its performance assessment is conducted. Advances in the development of improved electrodes are presented for various electrode materials. Experimental studies for a 300 cm2 electrolytic cell show a stable current density and production at 98% of the theoretical hydrogen production rate. Long term testing of the electrolyzer for over 1600 h also shows a stable cell voltage. Different systems to address integration challenges are also examined for the integration of electrolysis/hydrolysis and thermolysis/electrolysis processes. New results from experiments for CuCl–HCl–H2O and CuCl2–HCl–H2O ternary systems are presented along with solubility data for CuCl in HCl–H2O mixtures between 298 and 363 K. A parametric study of multi-generation energy systems incorporating the Cu–Cl cycle is presented with an overall energy efficiency as high as 57% and exergy efficiency of hydrogen production up to 90%. •Recent advances in thermochemical hydrogen production with the Cu–Cl cycle.•Performance of CuCl/HCl electrolytic cell for over 1600 h of operation.•Improved electrodes and results for Silane and 2 Nafion/polypyrrole membranes.•Multi-generation integrated Cu–Cl cycle and improvements of the exergetic efficiency.</description><subject>Alternative fuels. Production and utilization</subject><subject>Applied sciences</subject><subject>Copper</subject><subject>Copper–chlorine cycle</subject><subject>Electrodes</subject><subject>Electrolysis</subject><subject>Electrolytic cells</subject><subject>Energy</subject><subject>Energy management</subject><subject>Exact sciences and technology</subject><subject>Fuels</subject><subject>Hydrogen</subject><subject>Hydrogen production</subject><subject>Hydrogen-based energy</subject><subject>Hydrolysis</subject><subject>Nuclear energy</subject><subject>Thermochemical hydrogen production</subject><subject>Thermolysis</subject><subject>Voltage</subject><issn>0360-3199</issn><issn>1879-3487</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkM1OwzAMxyMEEmPwCqgXJC4t-eja5gaa-JImwWEXTlHquixTl4ykA-3GO_CGPAmpNrhysmz_7L_9J-Sc0YxRVlwtM7NcbBu0mHHKRMZYRktxQEasKmUq8qo8JCMqCpoKJuUxOQlhSSkraS5H5OXZu1ePISSuTYzt0VvdG2d1l6yHjl4lziZxfUzQDrVmAwOQfJh-kfQLTMCt1-i_P79g0TlvbKxsocNTctTqLuDZPo7J_O52Pn1IZ0_3j9ObWQp5QfuUt7UArApgnFc5NBzrHMVESJaXWGkqJ1wK4LWsG12XbcPb-KTUdUNbCUUtxuRytzae9rbB0KuVCYBdpy26TVBsIhilE1HyiBY7FLwLwWOr1t6stN8qRtVgpVqqXyvVYKViTEUr4-DFXkMH0F3rtQUT_qZ5JQpR8TJy1zsO47_vBr0KYNACNsYj9Kpx5j-pHxcWkH4</recordid><startdate>20140214</startdate><enddate>20140214</enddate><creator>Naterer, G.F.</creator><creator>Suppiah, S.</creator><creator>Stolberg, L.</creator><creator>Lewis, M.</creator><creator>Ahmed, S.</creator><creator>Wang, Z.</creator><creator>Rosen, M.A.</creator><creator>Dincer, I.</creator><creator>Gabriel, K.</creator><creator>Secnik, E.</creator><creator>Easton, E.B.</creator><creator>Lvov, S.N.</creator><creator>Papangelakis, V.</creator><creator>Odukoya, A.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SU</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20140214</creationdate><title>Progress of international program on hydrogen production with the copper–chlorine cycle</title><author>Naterer, G.F. ; Suppiah, S. ; Stolberg, L. ; Lewis, M. ; Ahmed, S. ; Wang, Z. ; Rosen, M.A. ; Dincer, I. ; Gabriel, K. ; Secnik, E. ; Easton, E.B. ; Lvov, S.N. ; Papangelakis, V. ; Odukoya, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c460t-2fb3ce86c12284cd2eb4e3539147e8a095293c2b9bdab7fd2f2019abd0f9c6b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Alternative fuels. Production and utilization</topic><topic>Applied sciences</topic><topic>Copper</topic><topic>Copper–chlorine cycle</topic><topic>Electrodes</topic><topic>Electrolysis</topic><topic>Electrolytic cells</topic><topic>Energy</topic><topic>Energy management</topic><topic>Exact sciences and technology</topic><topic>Fuels</topic><topic>Hydrogen</topic><topic>Hydrogen production</topic><topic>Hydrogen-based energy</topic><topic>Hydrolysis</topic><topic>Nuclear energy</topic><topic>Thermochemical hydrogen production</topic><topic>Thermolysis</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Naterer, G.F.</creatorcontrib><creatorcontrib>Suppiah, S.</creatorcontrib><creatorcontrib>Stolberg, L.</creatorcontrib><creatorcontrib>Lewis, M.</creatorcontrib><creatorcontrib>Ahmed, S.</creatorcontrib><creatorcontrib>Wang, Z.</creatorcontrib><creatorcontrib>Rosen, M.A.</creatorcontrib><creatorcontrib>Dincer, I.</creatorcontrib><creatorcontrib>Gabriel, K.</creatorcontrib><creatorcontrib>Secnik, E.</creatorcontrib><creatorcontrib>Easton, E.B.</creatorcontrib><creatorcontrib>Lvov, S.N.</creatorcontrib><creatorcontrib>Papangelakis, V.</creatorcontrib><creatorcontrib>Odukoya, A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of hydrogen energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Naterer, G.F.</au><au>Suppiah, S.</au><au>Stolberg, L.</au><au>Lewis, M.</au><au>Ahmed, S.</au><au>Wang, Z.</au><au>Rosen, M.A.</au><au>Dincer, I.</au><au>Gabriel, K.</au><au>Secnik, E.</au><au>Easton, E.B.</au><au>Lvov, S.N.</au><au>Papangelakis, V.</au><au>Odukoya, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Progress of international program on hydrogen production with the copper–chlorine cycle</atitle><jtitle>International journal of hydrogen energy</jtitle><date>2014-02-14</date><risdate>2014</risdate><volume>39</volume><issue>6</issue><spage>2431</spage><epage>2445</epage><pages>2431-2445</pages><issn>0360-3199</issn><eissn>1879-3487</eissn><coden>IJHEDX</coden><abstract>This paper highlights and discusses the recent advances in thermochemical hydrogen production with the copper–chlorine (Cu–Cl) cycle. Extended operation of HCl/CuCl electrolysis is achieved, and its performance assessment is conducted. Advances in the development of improved electrodes are presented for various electrode materials. Experimental studies for a 300 cm2 electrolytic cell show a stable current density and production at 98% of the theoretical hydrogen production rate. Long term testing of the electrolyzer for over 1600 h also shows a stable cell voltage. Different systems to address integration challenges are also examined for the integration of electrolysis/hydrolysis and thermolysis/electrolysis processes. New results from experiments for CuCl–HCl–H2O and CuCl2–HCl–H2O ternary systems are presented along with solubility data for CuCl in HCl–H2O mixtures between 298 and 363 K. A parametric study of multi-generation energy systems incorporating the Cu–Cl cycle is presented with an overall energy efficiency as high as 57% and exergy efficiency of hydrogen production up to 90%. •Recent advances in thermochemical hydrogen production with the Cu–Cl cycle.•Performance of CuCl/HCl electrolytic cell for over 1600 h of operation.•Improved electrodes and results for Silane and 2 Nafion/polypyrrole membranes.•Multi-generation integrated Cu–Cl cycle and improvements of the exergetic efficiency.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijhydene.2013.11.073</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0360-3199
ispartof International journal of hydrogen energy, 2014-02, Vol.39 (6), p.2431-2445
issn 0360-3199
1879-3487
language eng
recordid cdi_proquest_miscellaneous_1531005372
source Elsevier ScienceDirect Journals Complete
subjects Alternative fuels. Production and utilization
Applied sciences
Copper
Copper–chlorine cycle
Electrodes
Electrolysis
Electrolytic cells
Energy
Energy management
Exact sciences and technology
Fuels
Hydrogen
Hydrogen production
Hydrogen-based energy
Hydrolysis
Nuclear energy
Thermochemical hydrogen production
Thermolysis
Voltage
title Progress of international program on hydrogen production with the copper–chlorine cycle
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T03%3A25%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Progress%20of%20international%20program%20on%20hydrogen%20production%20with%20the%20copper%E2%80%93chlorine%20cycle&rft.jtitle=International%20journal%20of%20hydrogen%20energy&rft.au=Naterer,%20G.F.&rft.date=2014-02-14&rft.volume=39&rft.issue=6&rft.spage=2431&rft.epage=2445&rft.pages=2431-2445&rft.issn=0360-3199&rft.eissn=1879-3487&rft.coden=IJHEDX&rft_id=info:doi/10.1016/j.ijhydene.2013.11.073&rft_dat=%3Cproquest_cross%3E1531005372%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1531005372&rft_id=info:pmid/&rft_els_id=S0360319913027985&rfr_iscdi=true