Fast Space-Varying Convolution Using Matrix Source Coding With Applications to Camera Stray Light Reduction

Many imaging applications require the implementation of space-varying convolution for accurate restoration and reconstruction of images. Here, we use the term space-varying convolution to refer to linear operators whose impulse response has slow spatial variation. In addition, these space-varying co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2014-05, Vol.23 (5), p.1965-1979
Hauptverfasser: Jianing Wei, Bouman, Charles A., Allebach, Jan P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1979
container_issue 5
container_start_page 1965
container_title IEEE transactions on image processing
container_volume 23
creator Jianing Wei
Bouman, Charles A.
Allebach, Jan P.
description Many imaging applications require the implementation of space-varying convolution for accurate restoration and reconstruction of images. Here, we use the term space-varying convolution to refer to linear operators whose impulse response has slow spatial variation. In addition, these space-varying convolution operators are often dense, so direct implementation of the convolution operator is typically computationally impractical. One such example is the problem of stray light reduction in digital cameras, which requires the implementation of a dense space-varying deconvolution operator. However, other inverse problems, such as iterative tomographic reconstruction, can also depend on the implementation of dense space-varying convolution. While space-invariant convolution can be efficiently implemented with the fast Fourier transform, this approach does not work for space-varying operators. So direct convolution is often the only option for implementing space-varying convolution. In this paper, we develop a general approach to the efficient implementation of space-varying convolution, and demonstrate its use in the application of stray light reduction. Our approach, which we call matrix source coding, is based on lossy source coding of the dense space-varying convolution matrix. Importantly, by coding the transformation matrix, we not only reduce the memory required to store it; we also dramatically reduce the computation required to implement matrix-vector products. Our algorithm is able to reduce computation by approximately factoring the dense space-varying convolution operator into a product of sparse transforms. Experimental results show that our method can dramatically reduce the computation required for stray light reduction while maintaining high accuracy.
doi_str_mv 10.1109/TIP.2014.2311657
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1531003699</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6766660</ieee_id><sourcerecordid>3266337931</sourcerecordid><originalsourceid>FETCH-LOGICAL-c410t-abb139d1611dc3d0e2b8b3b6e59fc9a844905c73fd7f2fdb7ade6b20951d03a33</originalsourceid><addsrcrecordid>eNqNkd9rFDEQgIMo9oe-C4IEpODLnpkkm2wey2G1cKJ4rT4u2STbpu7trklW7H9vwp0VfBICCTPfTJL5EHoBZAVA1Nury88rSoCvKAMQtXyEjkFxqAjh9HE-k1pWErg6Qicx3pFM1iCeoiPKJRCmmmP0_ULHhLezNq76qsO9H2_wehp_TsOS_DTi61giH3UK_hfeTkswLudtCX7z6Rafz_PgjS5sxGnCa71zQeNtCvoeb_zNbcJfnF1MAZ6hJ70eont-2E_R9cW7q_WHavPp_eX6fFMZDiRVuuuAKQsCwBpmiaNd07FOuFr1RumGc0VqI1lvZU9720ltnegoUTVYwjRjp-jNvu8cph-Li6nd-WjcMOjRTUtsoWZACBNK_QcKnFOlGpnR1_-gd3kcY_5IoaiQQjSQKbKnTJhiDK5v5-B3ebAtkLY4a7OztjhrD85yyatD46XbOftQ8EdSBs4OgI5GD33Qo_HxL9fUeYly98s9551zD-nyMCEI-w0HvKbi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1512676681</pqid></control><display><type>article</type><title>Fast Space-Varying Convolution Using Matrix Source Coding With Applications to Camera Stray Light Reduction</title><source>IEEE Electronic Library (IEL)</source><creator>Jianing Wei ; Bouman, Charles A. ; Allebach, Jan P.</creator><creatorcontrib>Jianing Wei ; Bouman, Charles A. ; Allebach, Jan P.</creatorcontrib><description>Many imaging applications require the implementation of space-varying convolution for accurate restoration and reconstruction of images. Here, we use the term space-varying convolution to refer to linear operators whose impulse response has slow spatial variation. In addition, these space-varying convolution operators are often dense, so direct implementation of the convolution operator is typically computationally impractical. One such example is the problem of stray light reduction in digital cameras, which requires the implementation of a dense space-varying deconvolution operator. However, other inverse problems, such as iterative tomographic reconstruction, can also depend on the implementation of dense space-varying convolution. While space-invariant convolution can be efficiently implemented with the fast Fourier transform, this approach does not work for space-varying operators. So direct convolution is often the only option for implementing space-varying convolution. In this paper, we develop a general approach to the efficient implementation of space-varying convolution, and demonstrate its use in the application of stray light reduction. Our approach, which we call matrix source coding, is based on lossy source coding of the dense space-varying convolution matrix. Importantly, by coding the transformation matrix, we not only reduce the memory required to store it; we also dramatically reduce the computation required to implement matrix-vector products. Our algorithm is able to reduce computation by approximately factoring the dense space-varying convolution operator into a product of sparse transforms. Experimental results show that our method can dramatically reduce the computation required for stray light reduction while maintaining high accuracy.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2014.2311657</identifier><identifier>PMID: 24710398</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Applied sciences ; Approximation methods ; Coding ; Coding, codes ; Computation ; Convolution ; Exact sciences and technology ; Fourier transforms ; Image processing ; Information, signal and communications theory ; Operators ; Reconstruction ; Reduction ; Signal and communications theory ; Signal processing ; Source coding ; Sparse matrices ; Stray light ; Telecommunications and information theory ; Wavelet transforms</subject><ispartof>IEEE transactions on image processing, 2014-05, Vol.23 (5), p.1965-1979</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c410t-abb139d1611dc3d0e2b8b3b6e59fc9a844905c73fd7f2fdb7ade6b20951d03a33</citedby><cites>FETCH-LOGICAL-c410t-abb139d1611dc3d0e2b8b3b6e59fc9a844905c73fd7f2fdb7ade6b20951d03a33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6766660$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6766660$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28528561$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24710398$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jianing Wei</creatorcontrib><creatorcontrib>Bouman, Charles A.</creatorcontrib><creatorcontrib>Allebach, Jan P.</creatorcontrib><title>Fast Space-Varying Convolution Using Matrix Source Coding With Applications to Camera Stray Light Reduction</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>Many imaging applications require the implementation of space-varying convolution for accurate restoration and reconstruction of images. Here, we use the term space-varying convolution to refer to linear operators whose impulse response has slow spatial variation. In addition, these space-varying convolution operators are often dense, so direct implementation of the convolution operator is typically computationally impractical. One such example is the problem of stray light reduction in digital cameras, which requires the implementation of a dense space-varying deconvolution operator. However, other inverse problems, such as iterative tomographic reconstruction, can also depend on the implementation of dense space-varying convolution. While space-invariant convolution can be efficiently implemented with the fast Fourier transform, this approach does not work for space-varying operators. So direct convolution is often the only option for implementing space-varying convolution. In this paper, we develop a general approach to the efficient implementation of space-varying convolution, and demonstrate its use in the application of stray light reduction. Our approach, which we call matrix source coding, is based on lossy source coding of the dense space-varying convolution matrix. Importantly, by coding the transformation matrix, we not only reduce the memory required to store it; we also dramatically reduce the computation required to implement matrix-vector products. Our algorithm is able to reduce computation by approximately factoring the dense space-varying convolution operator into a product of sparse transforms. Experimental results show that our method can dramatically reduce the computation required for stray light reduction while maintaining high accuracy.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Approximation methods</subject><subject>Coding</subject><subject>Coding, codes</subject><subject>Computation</subject><subject>Convolution</subject><subject>Exact sciences and technology</subject><subject>Fourier transforms</subject><subject>Image processing</subject><subject>Information, signal and communications theory</subject><subject>Operators</subject><subject>Reconstruction</subject><subject>Reduction</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Source coding</subject><subject>Sparse matrices</subject><subject>Stray light</subject><subject>Telecommunications and information theory</subject><subject>Wavelet transforms</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqNkd9rFDEQgIMo9oe-C4IEpODLnpkkm2wey2G1cKJ4rT4u2STbpu7trklW7H9vwp0VfBICCTPfTJL5EHoBZAVA1Nury88rSoCvKAMQtXyEjkFxqAjh9HE-k1pWErg6Qicx3pFM1iCeoiPKJRCmmmP0_ULHhLezNq76qsO9H2_wehp_TsOS_DTi61giH3UK_hfeTkswLudtCX7z6Rafz_PgjS5sxGnCa71zQeNtCvoeb_zNbcJfnF1MAZ6hJ70eont-2E_R9cW7q_WHavPp_eX6fFMZDiRVuuuAKQsCwBpmiaNd07FOuFr1RumGc0VqI1lvZU9720ltnegoUTVYwjRjp-jNvu8cph-Li6nd-WjcMOjRTUtsoWZACBNK_QcKnFOlGpnR1_-gd3kcY_5IoaiQQjSQKbKnTJhiDK5v5-B3ebAtkLY4a7OztjhrD85yyatD46XbOftQ8EdSBs4OgI5GD33Qo_HxL9fUeYly98s9551zD-nyMCEI-w0HvKbi</recordid><startdate>20140501</startdate><enddate>20140501</enddate><creator>Jianing Wei</creator><creator>Bouman, Charles A.</creator><creator>Allebach, Jan P.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20140501</creationdate><title>Fast Space-Varying Convolution Using Matrix Source Coding With Applications to Camera Stray Light Reduction</title><author>Jianing Wei ; Bouman, Charles A. ; Allebach, Jan P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c410t-abb139d1611dc3d0e2b8b3b6e59fc9a844905c73fd7f2fdb7ade6b20951d03a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Approximation methods</topic><topic>Coding</topic><topic>Coding, codes</topic><topic>Computation</topic><topic>Convolution</topic><topic>Exact sciences and technology</topic><topic>Fourier transforms</topic><topic>Image processing</topic><topic>Information, signal and communications theory</topic><topic>Operators</topic><topic>Reconstruction</topic><topic>Reduction</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Source coding</topic><topic>Sparse matrices</topic><topic>Stray light</topic><topic>Telecommunications and information theory</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jianing Wei</creatorcontrib><creatorcontrib>Bouman, Charles A.</creatorcontrib><creatorcontrib>Allebach, Jan P.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jianing Wei</au><au>Bouman, Charles A.</au><au>Allebach, Jan P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast Space-Varying Convolution Using Matrix Source Coding With Applications to Camera Stray Light Reduction</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2014-05-01</date><risdate>2014</risdate><volume>23</volume><issue>5</issue><spage>1965</spage><epage>1979</epage><pages>1965-1979</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>Many imaging applications require the implementation of space-varying convolution for accurate restoration and reconstruction of images. Here, we use the term space-varying convolution to refer to linear operators whose impulse response has slow spatial variation. In addition, these space-varying convolution operators are often dense, so direct implementation of the convolution operator is typically computationally impractical. One such example is the problem of stray light reduction in digital cameras, which requires the implementation of a dense space-varying deconvolution operator. However, other inverse problems, such as iterative tomographic reconstruction, can also depend on the implementation of dense space-varying convolution. While space-invariant convolution can be efficiently implemented with the fast Fourier transform, this approach does not work for space-varying operators. So direct convolution is often the only option for implementing space-varying convolution. In this paper, we develop a general approach to the efficient implementation of space-varying convolution, and demonstrate its use in the application of stray light reduction. Our approach, which we call matrix source coding, is based on lossy source coding of the dense space-varying convolution matrix. Importantly, by coding the transformation matrix, we not only reduce the memory required to store it; we also dramatically reduce the computation required to implement matrix-vector products. Our algorithm is able to reduce computation by approximately factoring the dense space-varying convolution operator into a product of sparse transforms. Experimental results show that our method can dramatically reduce the computation required for stray light reduction while maintaining high accuracy.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>24710398</pmid><doi>10.1109/TIP.2014.2311657</doi><tpages>15</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2014-05, Vol.23 (5), p.1965-1979
issn 1057-7149
1941-0042
language eng
recordid cdi_proquest_miscellaneous_1531003699
source IEEE Electronic Library (IEL)
subjects Algorithms
Applied sciences
Approximation methods
Coding
Coding, codes
Computation
Convolution
Exact sciences and technology
Fourier transforms
Image processing
Information, signal and communications theory
Operators
Reconstruction
Reduction
Signal and communications theory
Signal processing
Source coding
Sparse matrices
Stray light
Telecommunications and information theory
Wavelet transforms
title Fast Space-Varying Convolution Using Matrix Source Coding With Applications to Camera Stray Light Reduction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T00%3A13%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20Space-Varying%20Convolution%20Using%20Matrix%20Source%20Coding%20With%20Applications%20to%20Camera%20Stray%20Light%20Reduction&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Jianing%20Wei&rft.date=2014-05-01&rft.volume=23&rft.issue=5&rft.spage=1965&rft.epage=1979&rft.pages=1965-1979&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2014.2311657&rft_dat=%3Cproquest_RIE%3E3266337931%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1512676681&rft_id=info:pmid/24710398&rft_ieee_id=6766660&rfr_iscdi=true