Fast and scalable parallel layout decomposition in double patterning lithography

For 32/22nm technology nodes and below, double patterning (DP) lithography has become the most promising interim solutions due to the delay in the deployment of next generation lithography (e.g., EUV). DP requires the partitioning of the layout patterns into two different masks, a procedure called l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Integration (Amsterdam) 2014-03, Vol.47 (2), p.175-183
Hauptverfasser: Zhao, Wei, Yao, Hailong, Cai, Yici, Sinha, Subarna, Chiang, Charles
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 183
container_issue 2
container_start_page 175
container_title Integration (Amsterdam)
container_volume 47
creator Zhao, Wei
Yao, Hailong
Cai, Yici
Sinha, Subarna
Chiang, Charles
description For 32/22nm technology nodes and below, double patterning (DP) lithography has become the most promising interim solutions due to the delay in the deployment of next generation lithography (e.g., EUV). DP requires the partitioning of the layout patterns into two different masks, a procedure called layout decomposition. Layout decomposition is a key computational step that is necessary for double patterning technology. Existing works on layout decomposition are all single-threaded, which is not scalable in runtime and/or memory for large industrial layouts. This paper presents the first window-based parallel layout decomposition methods for improving both runtime and memory consumption. Experimental results are promising and show the presented parallel layout decomposition methods obtain upto 21× speedup in runtime and upto 7.5×reduction in peak memory consumption with acceptable solution quality. •A window-based parallel layout decomposition framework is presented for improving both runtime and memory consumption.•Two parallel layout decomposition approaches are presented and compared, including maximum independent set-based (MISP) and stochastic optimization-based (SOP) methods.•MISP obtains notable runtime and memory improvements. SOP further improves the solution quality using the Cross Entropy method.•An overlapping window-based scheme is presented, which avoids large memory consumption for constructing the whole graph of large layouts.•The presented parallel methods do not make any assumptions about the machine architecture and hence are very generic.
doi_str_mv 10.1016/j.vlsi.2013.09.002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1531001519</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167926013000485</els_id><sourcerecordid>1531001519</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-4077f52205fc88b10e837811ecd13914dfec252c8b41f342463fbda2d76e715a3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEuXjDzBlQWJJ8NlxnEgsCFFAqgQDzJZrX4orNw62i9R_T6oiRqZbnve9u4eQK6AVUGhu19W3T65iFHhFu4pSdkRm0EpWSsHYMZlNkCw71tBTcpbSmlIKtRQz8jbXKRd6sEUy2uulx2LUUXuPvvB6F7a5sGjCZgzJZReGwg2FDdsDlzPGwQ2rwrv8GVZRj5-7C3LSa5_w8neek4_54_vDc7l4fXp5uF-Uhjc8lzWVsp9Oo6I3bbsEii2XLQAaC7yD2vZomGCmXdbQ85rVDe-XVjMrG5QgND8nN4feMYavLaasNi4Z9F4PGLZJgeAwPSmgm1B2QE0MKUXs1RjdRsedAqr2-tRa7fWpvT5FOzXpm0LXv_16b6aPejAu_SVZy2sqOjFxdwcOp2e_HUaVjMPBoHURTVY2uP_W_ADfFoZe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1531001519</pqid></control><display><type>article</type><title>Fast and scalable parallel layout decomposition in double patterning lithography</title><source>Elsevier ScienceDirect Journals</source><creator>Zhao, Wei ; Yao, Hailong ; Cai, Yici ; Sinha, Subarna ; Chiang, Charles</creator><creatorcontrib>Zhao, Wei ; Yao, Hailong ; Cai, Yici ; Sinha, Subarna ; Chiang, Charles</creatorcontrib><description>For 32/22nm technology nodes and below, double patterning (DP) lithography has become the most promising interim solutions due to the delay in the deployment of next generation lithography (e.g., EUV). DP requires the partitioning of the layout patterns into two different masks, a procedure called layout decomposition. Layout decomposition is a key computational step that is necessary for double patterning technology. Existing works on layout decomposition are all single-threaded, which is not scalable in runtime and/or memory for large industrial layouts. This paper presents the first window-based parallel layout decomposition methods for improving both runtime and memory consumption. Experimental results are promising and show the presented parallel layout decomposition methods obtain upto 21× speedup in runtime and upto 7.5×reduction in peak memory consumption with acceptable solution quality. •A window-based parallel layout decomposition framework is presented for improving both runtime and memory consumption.•Two parallel layout decomposition approaches are presented and compared, including maximum independent set-based (MISP) and stochastic optimization-based (SOP) methods.•MISP obtains notable runtime and memory improvements. SOP further improves the solution quality using the Cross Entropy method.•An overlapping window-based scheme is presented, which avoids large memory consumption for constructing the whole graph of large layouts.•The presented parallel methods do not make any assumptions about the machine architecture and hence are very generic.</description><identifier>ISSN: 0167-9260</identifier><identifier>EISSN: 1872-7522</identifier><identifier>DOI: 10.1016/j.vlsi.2013.09.002</identifier><identifier>CODEN: IVJODL</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Acceptability ; Applied sciences ; Decomposition ; Delay ; Double patterning lithography ; Electronics ; Exact sciences and technology ; Layout decomposition ; Lithography ; Mathematical models ; Microelectronic fabrication (materials and surfaces technology) ; Parallel computing ; Partitioning ; Patterning ; Run time (computers) ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><ispartof>Integration (Amsterdam), 2014-03, Vol.47 (2), p.175-183</ispartof><rights>2013 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-4077f52205fc88b10e837811ecd13914dfec252c8b41f342463fbda2d76e715a3</citedby><cites>FETCH-LOGICAL-c363t-4077f52205fc88b10e837811ecd13914dfec252c8b41f342463fbda2d76e715a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0167926013000485$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28340595$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Wei</creatorcontrib><creatorcontrib>Yao, Hailong</creatorcontrib><creatorcontrib>Cai, Yici</creatorcontrib><creatorcontrib>Sinha, Subarna</creatorcontrib><creatorcontrib>Chiang, Charles</creatorcontrib><title>Fast and scalable parallel layout decomposition in double patterning lithography</title><title>Integration (Amsterdam)</title><description>For 32/22nm technology nodes and below, double patterning (DP) lithography has become the most promising interim solutions due to the delay in the deployment of next generation lithography (e.g., EUV). DP requires the partitioning of the layout patterns into two different masks, a procedure called layout decomposition. Layout decomposition is a key computational step that is necessary for double patterning technology. Existing works on layout decomposition are all single-threaded, which is not scalable in runtime and/or memory for large industrial layouts. This paper presents the first window-based parallel layout decomposition methods for improving both runtime and memory consumption. Experimental results are promising and show the presented parallel layout decomposition methods obtain upto 21× speedup in runtime and upto 7.5×reduction in peak memory consumption with acceptable solution quality. •A window-based parallel layout decomposition framework is presented for improving both runtime and memory consumption.•Two parallel layout decomposition approaches are presented and compared, including maximum independent set-based (MISP) and stochastic optimization-based (SOP) methods.•MISP obtains notable runtime and memory improvements. SOP further improves the solution quality using the Cross Entropy method.•An overlapping window-based scheme is presented, which avoids large memory consumption for constructing the whole graph of large layouts.•The presented parallel methods do not make any assumptions about the machine architecture and hence are very generic.</description><subject>Acceptability</subject><subject>Applied sciences</subject><subject>Decomposition</subject><subject>Delay</subject><subject>Double patterning lithography</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Layout decomposition</subject><subject>Lithography</subject><subject>Mathematical models</subject><subject>Microelectronic fabrication (materials and surfaces technology)</subject><subject>Parallel computing</subject><subject>Partitioning</subject><subject>Patterning</subject><subject>Run time (computers)</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><issn>0167-9260</issn><issn>1872-7522</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEuXjDzBlQWJJ8NlxnEgsCFFAqgQDzJZrX4orNw62i9R_T6oiRqZbnve9u4eQK6AVUGhu19W3T65iFHhFu4pSdkRm0EpWSsHYMZlNkCw71tBTcpbSmlIKtRQz8jbXKRd6sEUy2uulx2LUUXuPvvB6F7a5sGjCZgzJZReGwg2FDdsDlzPGwQ2rwrv8GVZRj5-7C3LSa5_w8neek4_54_vDc7l4fXp5uF-Uhjc8lzWVsp9Oo6I3bbsEii2XLQAaC7yD2vZomGCmXdbQ85rVDe-XVjMrG5QgND8nN4feMYavLaasNi4Z9F4PGLZJgeAwPSmgm1B2QE0MKUXs1RjdRsedAqr2-tRa7fWpvT5FOzXpm0LXv_16b6aPejAu_SVZy2sqOjFxdwcOp2e_HUaVjMPBoHURTVY2uP_W_ADfFoZe</recordid><startdate>20140301</startdate><enddate>20140301</enddate><creator>Zhao, Wei</creator><creator>Yao, Hailong</creator><creator>Cai, Yici</creator><creator>Sinha, Subarna</creator><creator>Chiang, Charles</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20140301</creationdate><title>Fast and scalable parallel layout decomposition in double patterning lithography</title><author>Zhao, Wei ; Yao, Hailong ; Cai, Yici ; Sinha, Subarna ; Chiang, Charles</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-4077f52205fc88b10e837811ecd13914dfec252c8b41f342463fbda2d76e715a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Acceptability</topic><topic>Applied sciences</topic><topic>Decomposition</topic><topic>Delay</topic><topic>Double patterning lithography</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Layout decomposition</topic><topic>Lithography</topic><topic>Mathematical models</topic><topic>Microelectronic fabrication (materials and surfaces technology)</topic><topic>Parallel computing</topic><topic>Partitioning</topic><topic>Patterning</topic><topic>Run time (computers)</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Wei</creatorcontrib><creatorcontrib>Yao, Hailong</creatorcontrib><creatorcontrib>Cai, Yici</creatorcontrib><creatorcontrib>Sinha, Subarna</creatorcontrib><creatorcontrib>Chiang, Charles</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Integration (Amsterdam)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Wei</au><au>Yao, Hailong</au><au>Cai, Yici</au><au>Sinha, Subarna</au><au>Chiang, Charles</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast and scalable parallel layout decomposition in double patterning lithography</atitle><jtitle>Integration (Amsterdam)</jtitle><date>2014-03-01</date><risdate>2014</risdate><volume>47</volume><issue>2</issue><spage>175</spage><epage>183</epage><pages>175-183</pages><issn>0167-9260</issn><eissn>1872-7522</eissn><coden>IVJODL</coden><abstract>For 32/22nm technology nodes and below, double patterning (DP) lithography has become the most promising interim solutions due to the delay in the deployment of next generation lithography (e.g., EUV). DP requires the partitioning of the layout patterns into two different masks, a procedure called layout decomposition. Layout decomposition is a key computational step that is necessary for double patterning technology. Existing works on layout decomposition are all single-threaded, which is not scalable in runtime and/or memory for large industrial layouts. This paper presents the first window-based parallel layout decomposition methods for improving both runtime and memory consumption. Experimental results are promising and show the presented parallel layout decomposition methods obtain upto 21× speedup in runtime and upto 7.5×reduction in peak memory consumption with acceptable solution quality. •A window-based parallel layout decomposition framework is presented for improving both runtime and memory consumption.•Two parallel layout decomposition approaches are presented and compared, including maximum independent set-based (MISP) and stochastic optimization-based (SOP) methods.•MISP obtains notable runtime and memory improvements. SOP further improves the solution quality using the Cross Entropy method.•An overlapping window-based scheme is presented, which avoids large memory consumption for constructing the whole graph of large layouts.•The presented parallel methods do not make any assumptions about the machine architecture and hence are very generic.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.vlsi.2013.09.002</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-9260
ispartof Integration (Amsterdam), 2014-03, Vol.47 (2), p.175-183
issn 0167-9260
1872-7522
language eng
recordid cdi_proquest_miscellaneous_1531001519
source Elsevier ScienceDirect Journals
subjects Acceptability
Applied sciences
Decomposition
Delay
Double patterning lithography
Electronics
Exact sciences and technology
Layout decomposition
Lithography
Mathematical models
Microelectronic fabrication (materials and surfaces technology)
Parallel computing
Partitioning
Patterning
Run time (computers)
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
title Fast and scalable parallel layout decomposition in double patterning lithography
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T13%3A57%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20and%20scalable%20parallel%20layout%20decomposition%20in%20double%20patterning%20lithography&rft.jtitle=Integration%20(Amsterdam)&rft.au=Zhao,%20Wei&rft.date=2014-03-01&rft.volume=47&rft.issue=2&rft.spage=175&rft.epage=183&rft.pages=175-183&rft.issn=0167-9260&rft.eissn=1872-7522&rft.coden=IVJODL&rft_id=info:doi/10.1016/j.vlsi.2013.09.002&rft_dat=%3Cproquest_cross%3E1531001519%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1531001519&rft_id=info:pmid/&rft_els_id=S0167926013000485&rfr_iscdi=true