Monotone Submodular Maximization over a Matroid via Non-Oblivious Local Search
We present an optimal, combinatorial $1-1/e$ approximation algorithm for monotone submodular optimization over a matroid constraint. Compared to the continuous greedy algorithm [G. Calinescu et al., IPCO, Springer, Berlin, 2007, pp. 182--196] our algorithm is extremely simple and requires no roundin...
Gespeichert in:
Veröffentlicht in: | SIAM journal on computing 2014-01, Vol.43 (2), p.514-542 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 542 |
---|---|
container_issue | 2 |
container_start_page | 514 |
container_title | SIAM journal on computing |
container_volume | 43 |
creator | Filmus, Yuval Ward, Justin |
description | We present an optimal, combinatorial $1-1/e$ approximation algorithm for monotone submodular optimization over a matroid constraint. Compared to the continuous greedy algorithm [G. Calinescu et al., IPCO, Springer, Berlin, 2007, pp. 182--196] our algorithm is extremely simple and requires no rounding. It consists of the greedy algorithm followed by a local search. Both phases are run not on the actual objective function, but on a related auxiliary potential function, which is also monotone and submodular. In our previous work on maximum coverage [Y. Filmus and J. Ward, FOCS, IEEE, Piscataway, NJ, 2012, pp. 659--668], the potential function gives more weight to elements covered multiple times. We generalize this approach from coverage functions to arbitrary monotone submodular functions. When the objective function is a coverage function, both definitions of the potential function coincide. Our approach generalizes to the case where the monotone submodular function has restricted curvature. For any curvature $c$, we adapt our algorithm to produce a $(1-e^{-c})/c$ approximation. This matches results of Vondrak [STOC, ACM, New York, 2008, pp. 67--74], who has shown that the continuous greedy algorithm produces a $(1-e^{-c})/c$ approximation when the objective function has curvature $c$ with respect to the optimum, and proved that achieving any better approximation ratio is impossible in the value oracle model. [PUBLICATION ABSTRACT] |
doi_str_mv | 10.1137/130920277 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1531001293</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1531001293</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-8b8a182ce1483b4a89e9df9b5fe540c776c8c5b33eeb8cce8eac7b72fcd135cf3</originalsourceid><addsrcrecordid>eNpd0E1LxDAQBuAgCq6rB_9BwIseqpmmMclRFr9gPw6r55KkU8zSNmvSLuqvt7LiwdPA8DC88xJyDuwagMsb4EznLJfygEyAaZFJADgkE8a0zATX8picpLRhDIoC-IQsF6ELfeiQrgfbhmpoTKQL8-Fb_2V6HzoadhipGXd9DL6iO2_oMnTZyjZ-58OQ6Dw409A1mujeTslRbZqEZ79zSl4f7l9mT9l89fg8u5tnjmvoM2WVAZU7hEJxWxilUVe1tqJGUTAn5a1TTljOEa1yDhUaJ63Ma1cBF67mU3K5v7uN4X3A1JetTw6bxnQ4ZipBcBh_zDUf6cU_uglD7MZ0owImJFdMj-pqr1wMKUWsy230rYmfJbDyp9nyr1n-DXo2apA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1510573809</pqid></control><display><type>article</type><title>Monotone Submodular Maximization over a Matroid via Non-Oblivious Local Search</title><source>SIAM Journals Online</source><creator>Filmus, Yuval ; Ward, Justin</creator><creatorcontrib>Filmus, Yuval ; Ward, Justin</creatorcontrib><description>We present an optimal, combinatorial $1-1/e$ approximation algorithm for monotone submodular optimization over a matroid constraint. Compared to the continuous greedy algorithm [G. Calinescu et al., IPCO, Springer, Berlin, 2007, pp. 182--196] our algorithm is extremely simple and requires no rounding. It consists of the greedy algorithm followed by a local search. Both phases are run not on the actual objective function, but on a related auxiliary potential function, which is also monotone and submodular. In our previous work on maximum coverage [Y. Filmus and J. Ward, FOCS, IEEE, Piscataway, NJ, 2012, pp. 659--668], the potential function gives more weight to elements covered multiple times. We generalize this approach from coverage functions to arbitrary monotone submodular functions. When the objective function is a coverage function, both definitions of the potential function coincide. Our approach generalizes to the case where the monotone submodular function has restricted curvature. For any curvature $c$, we adapt our algorithm to produce a $(1-e^{-c})/c$ approximation. This matches results of Vondrak [STOC, ACM, New York, 2008, pp. 67--74], who has shown that the continuous greedy algorithm produces a $(1-e^{-c})/c$ approximation when the objective function has curvature $c$ with respect to the optimum, and proved that achieving any better approximation ratio is impossible in the value oracle model. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0097-5397</identifier><identifier>EISSN: 1095-7111</identifier><identifier>DOI: 10.1137/130920277</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Algorithms ; Approximation ; Combinatorial analysis ; Curvature ; Greedy algorithms ; Mathematical analysis ; Mathematical models ; Optimization</subject><ispartof>SIAM journal on computing, 2014-01, Vol.43 (2), p.514-542</ispartof><rights>2014, Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-8b8a182ce1483b4a89e9df9b5fe540c776c8c5b33eeb8cce8eac7b72fcd135cf3</citedby><cites>FETCH-LOGICAL-c391t-8b8a182ce1483b4a89e9df9b5fe540c776c8c5b33eeb8cce8eac7b72fcd135cf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3184,27924,27925</link.rule.ids></links><search><creatorcontrib>Filmus, Yuval</creatorcontrib><creatorcontrib>Ward, Justin</creatorcontrib><title>Monotone Submodular Maximization over a Matroid via Non-Oblivious Local Search</title><title>SIAM journal on computing</title><description>We present an optimal, combinatorial $1-1/e$ approximation algorithm for monotone submodular optimization over a matroid constraint. Compared to the continuous greedy algorithm [G. Calinescu et al., IPCO, Springer, Berlin, 2007, pp. 182--196] our algorithm is extremely simple and requires no rounding. It consists of the greedy algorithm followed by a local search. Both phases are run not on the actual objective function, but on a related auxiliary potential function, which is also monotone and submodular. In our previous work on maximum coverage [Y. Filmus and J. Ward, FOCS, IEEE, Piscataway, NJ, 2012, pp. 659--668], the potential function gives more weight to elements covered multiple times. We generalize this approach from coverage functions to arbitrary monotone submodular functions. When the objective function is a coverage function, both definitions of the potential function coincide. Our approach generalizes to the case where the monotone submodular function has restricted curvature. For any curvature $c$, we adapt our algorithm to produce a $(1-e^{-c})/c$ approximation. This matches results of Vondrak [STOC, ACM, New York, 2008, pp. 67--74], who has shown that the continuous greedy algorithm produces a $(1-e^{-c})/c$ approximation when the objective function has curvature $c$ with respect to the optimum, and proved that achieving any better approximation ratio is impossible in the value oracle model. [PUBLICATION ABSTRACT]</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Combinatorial analysis</subject><subject>Curvature</subject><subject>Greedy algorithms</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Optimization</subject><issn>0097-5397</issn><issn>1095-7111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpd0E1LxDAQBuAgCq6rB_9BwIseqpmmMclRFr9gPw6r55KkU8zSNmvSLuqvt7LiwdPA8DC88xJyDuwagMsb4EznLJfygEyAaZFJADgkE8a0zATX8picpLRhDIoC-IQsF6ELfeiQrgfbhmpoTKQL8-Fb_2V6HzoadhipGXd9DL6iO2_oMnTZyjZ-58OQ6Dw409A1mujeTslRbZqEZ79zSl4f7l9mT9l89fg8u5tnjmvoM2WVAZU7hEJxWxilUVe1tqJGUTAn5a1TTljOEa1yDhUaJ63Ma1cBF67mU3K5v7uN4X3A1JetTw6bxnQ4ZipBcBh_zDUf6cU_uglD7MZ0owImJFdMj-pqr1wMKUWsy230rYmfJbDyp9nyr1n-DXo2apA</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Filmus, Yuval</creator><creator>Ward, Justin</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0W</scope><scope>U9A</scope><scope>7SC</scope><scope>8FD</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140101</creationdate><title>Monotone Submodular Maximization over a Matroid via Non-Oblivious Local Search</title><author>Filmus, Yuval ; Ward, Justin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-8b8a182ce1483b4a89e9df9b5fe540c776c8c5b33eeb8cce8eac7b72fcd135cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Combinatorial analysis</topic><topic>Curvature</topic><topic>Greedy algorithms</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Filmus, Yuval</creatorcontrib><creatorcontrib>Ward, Justin</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career & Technical Education Database</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>SIAM journal on computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Filmus, Yuval</au><au>Ward, Justin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monotone Submodular Maximization over a Matroid via Non-Oblivious Local Search</atitle><jtitle>SIAM journal on computing</jtitle><date>2014-01-01</date><risdate>2014</risdate><volume>43</volume><issue>2</issue><spage>514</spage><epage>542</epage><pages>514-542</pages><issn>0097-5397</issn><eissn>1095-7111</eissn><abstract>We present an optimal, combinatorial $1-1/e$ approximation algorithm for monotone submodular optimization over a matroid constraint. Compared to the continuous greedy algorithm [G. Calinescu et al., IPCO, Springer, Berlin, 2007, pp. 182--196] our algorithm is extremely simple and requires no rounding. It consists of the greedy algorithm followed by a local search. Both phases are run not on the actual objective function, but on a related auxiliary potential function, which is also monotone and submodular. In our previous work on maximum coverage [Y. Filmus and J. Ward, FOCS, IEEE, Piscataway, NJ, 2012, pp. 659--668], the potential function gives more weight to elements covered multiple times. We generalize this approach from coverage functions to arbitrary monotone submodular functions. When the objective function is a coverage function, both definitions of the potential function coincide. Our approach generalizes to the case where the monotone submodular function has restricted curvature. For any curvature $c$, we adapt our algorithm to produce a $(1-e^{-c})/c$ approximation. This matches results of Vondrak [STOC, ACM, New York, 2008, pp. 67--74], who has shown that the continuous greedy algorithm produces a $(1-e^{-c})/c$ approximation when the objective function has curvature $c$ with respect to the optimum, and proved that achieving any better approximation ratio is impossible in the value oracle model. [PUBLICATION ABSTRACT]</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/130920277</doi><tpages>29</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0097-5397 |
ispartof | SIAM journal on computing, 2014-01, Vol.43 (2), p.514-542 |
issn | 0097-5397 1095-7111 |
language | eng |
recordid | cdi_proquest_miscellaneous_1531001293 |
source | SIAM Journals Online |
subjects | Algorithms Approximation Combinatorial analysis Curvature Greedy algorithms Mathematical analysis Mathematical models Optimization |
title | Monotone Submodular Maximization over a Matroid via Non-Oblivious Local Search |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T22%3A51%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monotone%20Submodular%20Maximization%20over%20a%20Matroid%20via%20Non-Oblivious%20Local%20Search&rft.jtitle=SIAM%20journal%20on%20computing&rft.au=Filmus,%20Yuval&rft.date=2014-01-01&rft.volume=43&rft.issue=2&rft.spage=514&rft.epage=542&rft.pages=514-542&rft.issn=0097-5397&rft.eissn=1095-7111&rft_id=info:doi/10.1137/130920277&rft_dat=%3Cproquest_cross%3E1531001293%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1510573809&rft_id=info:pmid/&rfr_iscdi=true |