Artificial Immune Systems applied to the reconfiguration of electrical power distribution networks for energy loss minimization

•The Artificial Immune System is proposed to reconfigure distribution networks.•The proposed approach seeks minimal energy loss through an improved algorithm.•The algorithm leads to good quality solutions with acceptable computation effort.•The proposed methodology meets the network radiality and co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of electrical power & energy systems 2014-03, Vol.56, p.64-74
Hauptverfasser: de Oliveira, Leonardo W., de Oliveira, Edimar J., Gomes, Flávio V., Silva, Ivo C., Marcato, André L.M., Resende, Paulo V.C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 74
container_issue
container_start_page 64
container_title International journal of electrical power & energy systems
container_volume 56
creator de Oliveira, Leonardo W.
de Oliveira, Edimar J.
Gomes, Flávio V.
Silva, Ivo C.
Marcato, André L.M.
Resende, Paulo V.C.
description •The Artificial Immune System is proposed to reconfigure distribution networks.•The proposed approach seeks minimal energy loss through an improved algorithm.•The algorithm leads to good quality solutions with acceptable computation effort.•The proposed methodology meets the network radiality and connectivity constraints.•Different load levels from daily load curves and the voltage levels are considered. This paper presents a methodology for the reconfiguration of radial electrical distribution systems based on the bio-inspired meta-heuristic Artificial Immune System to minimize energy losses. The proposed approach can handle this combinatorial mixed integer problem of nonlinear programming. Radiality and connectivity constraints are considered as well as different load levels for planning the system operation. For this purpose, improvements to an algorithm in the literature are proposed to better accommodate the features of the problem and to improve the search process. The algorithm developed is tested in well-known distribution systems.
doi_str_mv 10.1016/j.ijepes.2013.11.008
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1531001232</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142061513004663</els_id><sourcerecordid>1531001232</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-6170b24f5d4ef185dcf6e54d144ba7aef77e8f6e8234e96b0e4b8ecf8c385bb3</originalsourceid><addsrcrecordid>eNp9kMFu1DAQhiMEEkvhDTj4gsQlweM4sfeCVFUUKlXiQO-W44zLLEkcbIdqufDquN2qx55GHn3_zPirqvfAG-DQfzo0dMAVUyM4tA1Aw7l-Ue1Aq33ddqBeVjsOUtS8h-519SalA-dc7aXYVf_OYyZPjuzEruZ5W5D9OKaMc2J2XSfCkeXA8k9kEV1YPN1u0WYKCwue4YQuR3Ilu4Y7jGykVN7D9gAsmO9C_JWYD5HhgvH2yKaQEptpoZn-Pox5W73ydkr47rGeVTeXX24uvtXX379eXZxf167t97nuQfFBSN-NEj3obnS-x06OIOVglUWvFOrS0qKVuO8HjnLQ6Lx2re6GoT2rPp7GrjH83jBlM1NyOE12wbAlA10LnINoRUHlCXWxHBvRmzXSbOPRADf3us3BnHSbe90GwBTdJfbhcYNNRYiPdnGUnrJCtyCUUoX7fOKw_PYPYTTJES4ORyqGsxkDPb_oPxX5nBU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1531001232</pqid></control><display><type>article</type><title>Artificial Immune Systems applied to the reconfiguration of electrical power distribution networks for energy loss minimization</title><source>Elsevier ScienceDirect Journals</source><creator>de Oliveira, Leonardo W. ; de Oliveira, Edimar J. ; Gomes, Flávio V. ; Silva, Ivo C. ; Marcato, André L.M. ; Resende, Paulo V.C.</creator><creatorcontrib>de Oliveira, Leonardo W. ; de Oliveira, Edimar J. ; Gomes, Flávio V. ; Silva, Ivo C. ; Marcato, André L.M. ; Resende, Paulo V.C.</creatorcontrib><description>•The Artificial Immune System is proposed to reconfigure distribution networks.•The proposed approach seeks minimal energy loss through an improved algorithm.•The algorithm leads to good quality solutions with acceptable computation effort.•The proposed methodology meets the network radiality and connectivity constraints.•Different load levels from daily load curves and the voltage levels are considered. This paper presents a methodology for the reconfiguration of radial electrical distribution systems based on the bio-inspired meta-heuristic Artificial Immune System to minimize energy losses. The proposed approach can handle this combinatorial mixed integer problem of nonlinear programming. Radiality and connectivity constraints are considered as well as different load levels for planning the system operation. For this purpose, improvements to an algorithm in the literature are proposed to better accommodate the features of the problem and to improve the search process. The algorithm developed is tested in well-known distribution systems.</description><identifier>ISSN: 0142-0615</identifier><identifier>EISSN: 1879-3517</identifier><identifier>DOI: 10.1016/j.ijepes.2013.11.008</identifier><identifier>CODEN: IEPSDC</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Algorithms ; Applied sciences ; Artificial Immune System ; Artificial intelligence ; Combinatorial analysis ; Distribution system ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Energy conservation ; Energy distribution ; Energy loss ; Exact sciences and technology ; Miscellaneous ; Mixed integer ; Nonlinear programming ; Power networks and lines ; Reconfiguration</subject><ispartof>International journal of electrical power &amp; energy systems, 2014-03, Vol.56, p.64-74</ispartof><rights>2013 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-6170b24f5d4ef185dcf6e54d144ba7aef77e8f6e8234e96b0e4b8ecf8c385bb3</citedby><cites>FETCH-LOGICAL-c369t-6170b24f5d4ef185dcf6e54d144ba7aef77e8f6e8234e96b0e4b8ecf8c385bb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0142061513004663$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28312777$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>de Oliveira, Leonardo W.</creatorcontrib><creatorcontrib>de Oliveira, Edimar J.</creatorcontrib><creatorcontrib>Gomes, Flávio V.</creatorcontrib><creatorcontrib>Silva, Ivo C.</creatorcontrib><creatorcontrib>Marcato, André L.M.</creatorcontrib><creatorcontrib>Resende, Paulo V.C.</creatorcontrib><title>Artificial Immune Systems applied to the reconfiguration of electrical power distribution networks for energy loss minimization</title><title>International journal of electrical power &amp; energy systems</title><description>•The Artificial Immune System is proposed to reconfigure distribution networks.•The proposed approach seeks minimal energy loss through an improved algorithm.•The algorithm leads to good quality solutions with acceptable computation effort.•The proposed methodology meets the network radiality and connectivity constraints.•Different load levels from daily load curves and the voltage levels are considered. This paper presents a methodology for the reconfiguration of radial electrical distribution systems based on the bio-inspired meta-heuristic Artificial Immune System to minimize energy losses. The proposed approach can handle this combinatorial mixed integer problem of nonlinear programming. Radiality and connectivity constraints are considered as well as different load levels for planning the system operation. For this purpose, improvements to an algorithm in the literature are proposed to better accommodate the features of the problem and to improve the search process. The algorithm developed is tested in well-known distribution systems.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Artificial Immune System</subject><subject>Artificial intelligence</subject><subject>Combinatorial analysis</subject><subject>Distribution system</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Energy conservation</subject><subject>Energy distribution</subject><subject>Energy loss</subject><subject>Exact sciences and technology</subject><subject>Miscellaneous</subject><subject>Mixed integer</subject><subject>Nonlinear programming</subject><subject>Power networks and lines</subject><subject>Reconfiguration</subject><issn>0142-0615</issn><issn>1879-3517</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kMFu1DAQhiMEEkvhDTj4gsQlweM4sfeCVFUUKlXiQO-W44zLLEkcbIdqufDquN2qx55GHn3_zPirqvfAG-DQfzo0dMAVUyM4tA1Aw7l-Ue1Aq33ddqBeVjsOUtS8h-519SalA-dc7aXYVf_OYyZPjuzEruZ5W5D9OKaMc2J2XSfCkeXA8k9kEV1YPN1u0WYKCwue4YQuR3Ilu4Y7jGykVN7D9gAsmO9C_JWYD5HhgvH2yKaQEptpoZn-Pox5W73ydkr47rGeVTeXX24uvtXX379eXZxf167t97nuQfFBSN-NEj3obnS-x06OIOVglUWvFOrS0qKVuO8HjnLQ6Lx2re6GoT2rPp7GrjH83jBlM1NyOE12wbAlA10LnINoRUHlCXWxHBvRmzXSbOPRADf3us3BnHSbe90GwBTdJfbhcYNNRYiPdnGUnrJCtyCUUoX7fOKw_PYPYTTJES4ORyqGsxkDPb_oPxX5nBU</recordid><startdate>20140301</startdate><enddate>20140301</enddate><creator>de Oliveira, Leonardo W.</creator><creator>de Oliveira, Edimar J.</creator><creator>Gomes, Flávio V.</creator><creator>Silva, Ivo C.</creator><creator>Marcato, André L.M.</creator><creator>Resende, Paulo V.C.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20140301</creationdate><title>Artificial Immune Systems applied to the reconfiguration of electrical power distribution networks for energy loss minimization</title><author>de Oliveira, Leonardo W. ; de Oliveira, Edimar J. ; Gomes, Flávio V. ; Silva, Ivo C. ; Marcato, André L.M. ; Resende, Paulo V.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-6170b24f5d4ef185dcf6e54d144ba7aef77e8f6e8234e96b0e4b8ecf8c385bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Artificial Immune System</topic><topic>Artificial intelligence</topic><topic>Combinatorial analysis</topic><topic>Distribution system</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Energy conservation</topic><topic>Energy distribution</topic><topic>Energy loss</topic><topic>Exact sciences and technology</topic><topic>Miscellaneous</topic><topic>Mixed integer</topic><topic>Nonlinear programming</topic><topic>Power networks and lines</topic><topic>Reconfiguration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Oliveira, Leonardo W.</creatorcontrib><creatorcontrib>de Oliveira, Edimar J.</creatorcontrib><creatorcontrib>Gomes, Flávio V.</creatorcontrib><creatorcontrib>Silva, Ivo C.</creatorcontrib><creatorcontrib>Marcato, André L.M.</creatorcontrib><creatorcontrib>Resende, Paulo V.C.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of electrical power &amp; energy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Oliveira, Leonardo W.</au><au>de Oliveira, Edimar J.</au><au>Gomes, Flávio V.</au><au>Silva, Ivo C.</au><au>Marcato, André L.M.</au><au>Resende, Paulo V.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial Immune Systems applied to the reconfiguration of electrical power distribution networks for energy loss minimization</atitle><jtitle>International journal of electrical power &amp; energy systems</jtitle><date>2014-03-01</date><risdate>2014</risdate><volume>56</volume><spage>64</spage><epage>74</epage><pages>64-74</pages><issn>0142-0615</issn><eissn>1879-3517</eissn><coden>IEPSDC</coden><abstract>•The Artificial Immune System is proposed to reconfigure distribution networks.•The proposed approach seeks minimal energy loss through an improved algorithm.•The algorithm leads to good quality solutions with acceptable computation effort.•The proposed methodology meets the network radiality and connectivity constraints.•Different load levels from daily load curves and the voltage levels are considered. This paper presents a methodology for the reconfiguration of radial electrical distribution systems based on the bio-inspired meta-heuristic Artificial Immune System to minimize energy losses. The proposed approach can handle this combinatorial mixed integer problem of nonlinear programming. Radiality and connectivity constraints are considered as well as different load levels for planning the system operation. For this purpose, improvements to an algorithm in the literature are proposed to better accommodate the features of the problem and to improve the search process. The algorithm developed is tested in well-known distribution systems.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijepes.2013.11.008</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0142-0615
ispartof International journal of electrical power & energy systems, 2014-03, Vol.56, p.64-74
issn 0142-0615
1879-3517
language eng
recordid cdi_proquest_miscellaneous_1531001232
source Elsevier ScienceDirect Journals
subjects Algorithms
Applied sciences
Artificial Immune System
Artificial intelligence
Combinatorial analysis
Distribution system
Electrical engineering. Electrical power engineering
Electrical power engineering
Energy conservation
Energy distribution
Energy loss
Exact sciences and technology
Miscellaneous
Mixed integer
Nonlinear programming
Power networks and lines
Reconfiguration
title Artificial Immune Systems applied to the reconfiguration of electrical power distribution networks for energy loss minimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T09%3A27%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20Immune%20Systems%20applied%20to%20the%20reconfiguration%20of%20electrical%20power%20distribution%20networks%20for%20energy%20loss%20minimization&rft.jtitle=International%20journal%20of%20electrical%20power%20&%20energy%20systems&rft.au=de%20Oliveira,%20Leonardo%20W.&rft.date=2014-03-01&rft.volume=56&rft.spage=64&rft.epage=74&rft.pages=64-74&rft.issn=0142-0615&rft.eissn=1879-3517&rft.coden=IEPSDC&rft_id=info:doi/10.1016/j.ijepes.2013.11.008&rft_dat=%3Cproquest_cross%3E1531001232%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1531001232&rft_id=info:pmid/&rft_els_id=S0142061513004663&rfr_iscdi=true