Reprotonated polyanilines: The stability of conductivity at elevated temperature
Reprotonation of polyaniline base with various acids opens a way to conducting materials widely differing in physical properties. The thermal stability of the resulting polyaniline salts was tested by measurements of the conductivity at 125 °C for up to 500 h. Polyaniline sulfate was the most stable...
Gespeichert in:
Veröffentlicht in: | Polymer degradation and stability 2014-04, Vol.102, p.67-73 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 73 |
---|---|
container_issue | |
container_start_page | 67 |
container_title | Polymer degradation and stability |
container_volume | 102 |
creator | Stejskal, Jaroslav Prokeš, Jan Trchová, Miroslava |
description | Reprotonation of polyaniline base with various acids opens a way to conducting materials widely differing in physical properties. The thermal stability of the resulting polyaniline salts was tested by measurements of the conductivity at 125 °C for up to 500 h. Polyaniline sulfate was the most stable and its resistivity increased only by 3.6 times after that time. The stability differed considerably depending on the acid used for reprotonation. The room-temperature conductivity of polyaniline salt is determined by the strength of the acid and its ionic bond with the imine nitrogen in polyaniline. The thermal stability of conductivity, however, is controlled by the ability of the acid to constitute hydrogen bonds with the secondary amine nitrogens in polyaniline. For that reason, oxygen-containing counter-ions, such as sulfates or sulfonates, produce more stable salts with polyaniline, compared with polyaniline protonated with, e.g., hydrochloric acid. The presence of hydroxyl group in the counter-ions also enhances the thermal stability of the polyaniline salt. These conclusions are supported by the analysis of FTIR spectra. |
doi_str_mv | 10.1016/j.polymdegradstab.2014.02.001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1531000993</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0141391014000494</els_id><sourcerecordid>1531000993</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-2dd8166e92a643e98f5e29319233bbc05703c4b9e396f4282a3bd2096694384d3</originalsourceid><addsrcrecordid>eNqNkE1LAzEQhoMoWKv_YS8FL7vmY78ieJCiVSgoUs8hm8xqyn6ZZAv992Zt8eDJuQzDPPPOzIvQguCEYJLfbJOhb_athg8rtfOySigmaYJpgjE5QTNSFiymjJJTNAsNEjNO8Dm6cG6LQ6QZmaHXNxhs7_tOetDRpCc705gO3G20-YRokg2130d9Ham-06PyZjfV0kfQwO5nzkM7gJV-tHCJzmrZOLg65jl6f3zYLJ_i9cvqeXm_jhXjuY-p1iXJc-BU5ikDXtYZUM4Ip4xVlcJZgZlKKw6BrlNaUskqTTHPc56yMtVsjq4PuuH8rxGcF61xCppGdtCPTpCMkfAk5yygdwdU2d45C7UYrGml3QuCxeSk2Io_TorJSYGpCE6G-cVxlXRKNrWVnTLuV4SWrGBFlgVudeAg_L0zYIVTBjoF2lhQXuje_HPjN6oKk5M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1531000993</pqid></control><display><type>article</type><title>Reprotonated polyanilines: The stability of conductivity at elevated temperature</title><source>Elsevier ScienceDirect Journals</source><creator>Stejskal, Jaroslav ; Prokeš, Jan ; Trchová, Miroslava</creator><creatorcontrib>Stejskal, Jaroslav ; Prokeš, Jan ; Trchová, Miroslava</creatorcontrib><description>Reprotonation of polyaniline base with various acids opens a way to conducting materials widely differing in physical properties. The thermal stability of the resulting polyaniline salts was tested by measurements of the conductivity at 125 °C for up to 500 h. Polyaniline sulfate was the most stable and its resistivity increased only by 3.6 times after that time. The stability differed considerably depending on the acid used for reprotonation. The room-temperature conductivity of polyaniline salt is determined by the strength of the acid and its ionic bond with the imine nitrogen in polyaniline. The thermal stability of conductivity, however, is controlled by the ability of the acid to constitute hydrogen bonds with the secondary amine nitrogens in polyaniline. For that reason, oxygen-containing counter-ions, such as sulfates or sulfonates, produce more stable salts with polyaniline, compared with polyaniline protonated with, e.g., hydrochloric acid. The presence of hydroxyl group in the counter-ions also enhances the thermal stability of the polyaniline salt. These conclusions are supported by the analysis of FTIR spectra.</description><identifier>ISSN: 0141-3910</identifier><identifier>EISSN: 1873-2321</identifier><identifier>DOI: 10.1016/j.polymdegradstab.2014.02.001</identifier><identifier>CODEN: PDSTDW</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Ageing ; Applied sciences ; Conducting polymer ; Conductivity ; Degradation ; Exact sciences and technology ; High temperature ; Hydrogen bonding ; Hydroxyl groups ; Physical properties ; Polyaniline ; Polyanilines ; Polymer industry, paints, wood ; Properties and testing ; Stability ; Sulfates ; Sulfonates ; Technology of polymers ; Thermal stability</subject><ispartof>Polymer degradation and stability, 2014-04, Vol.102, p.67-73</ispartof><rights>2014 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-2dd8166e92a643e98f5e29319233bbc05703c4b9e396f4282a3bd2096694384d3</citedby><cites>FETCH-LOGICAL-c396t-2dd8166e92a643e98f5e29319233bbc05703c4b9e396f4282a3bd2096694384d3</cites><orcidid>0000-0001-9350-9647</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0141391014000494$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28373755$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Stejskal, Jaroslav</creatorcontrib><creatorcontrib>Prokeš, Jan</creatorcontrib><creatorcontrib>Trchová, Miroslava</creatorcontrib><title>Reprotonated polyanilines: The stability of conductivity at elevated temperature</title><title>Polymer degradation and stability</title><description>Reprotonation of polyaniline base with various acids opens a way to conducting materials widely differing in physical properties. The thermal stability of the resulting polyaniline salts was tested by measurements of the conductivity at 125 °C for up to 500 h. Polyaniline sulfate was the most stable and its resistivity increased only by 3.6 times after that time. The stability differed considerably depending on the acid used for reprotonation. The room-temperature conductivity of polyaniline salt is determined by the strength of the acid and its ionic bond with the imine nitrogen in polyaniline. The thermal stability of conductivity, however, is controlled by the ability of the acid to constitute hydrogen bonds with the secondary amine nitrogens in polyaniline. For that reason, oxygen-containing counter-ions, such as sulfates or sulfonates, produce more stable salts with polyaniline, compared with polyaniline protonated with, e.g., hydrochloric acid. The presence of hydroxyl group in the counter-ions also enhances the thermal stability of the polyaniline salt. These conclusions are supported by the analysis of FTIR spectra.</description><subject>Ageing</subject><subject>Applied sciences</subject><subject>Conducting polymer</subject><subject>Conductivity</subject><subject>Degradation</subject><subject>Exact sciences and technology</subject><subject>High temperature</subject><subject>Hydrogen bonding</subject><subject>Hydroxyl groups</subject><subject>Physical properties</subject><subject>Polyaniline</subject><subject>Polyanilines</subject><subject>Polymer industry, paints, wood</subject><subject>Properties and testing</subject><subject>Stability</subject><subject>Sulfates</subject><subject>Sulfonates</subject><subject>Technology of polymers</subject><subject>Thermal stability</subject><issn>0141-3910</issn><issn>1873-2321</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkE1LAzEQhoMoWKv_YS8FL7vmY78ieJCiVSgoUs8hm8xqyn6ZZAv992Zt8eDJuQzDPPPOzIvQguCEYJLfbJOhb_athg8rtfOySigmaYJpgjE5QTNSFiymjJJTNAsNEjNO8Dm6cG6LQ6QZmaHXNxhs7_tOetDRpCc705gO3G20-YRokg2130d9Ham-06PyZjfV0kfQwO5nzkM7gJV-tHCJzmrZOLg65jl6f3zYLJ_i9cvqeXm_jhXjuY-p1iXJc-BU5ikDXtYZUM4Ip4xVlcJZgZlKKw6BrlNaUskqTTHPc56yMtVsjq4PuuH8rxGcF61xCppGdtCPTpCMkfAk5yygdwdU2d45C7UYrGml3QuCxeSk2Io_TorJSYGpCE6G-cVxlXRKNrWVnTLuV4SWrGBFlgVudeAg_L0zYIVTBjoF2lhQXuje_HPjN6oKk5M</recordid><startdate>20140401</startdate><enddate>20140401</enddate><creator>Stejskal, Jaroslav</creator><creator>Prokeš, Jan</creator><creator>Trchová, Miroslava</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9350-9647</orcidid></search><sort><creationdate>20140401</creationdate><title>Reprotonated polyanilines: The stability of conductivity at elevated temperature</title><author>Stejskal, Jaroslav ; Prokeš, Jan ; Trchová, Miroslava</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-2dd8166e92a643e98f5e29319233bbc05703c4b9e396f4282a3bd2096694384d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Ageing</topic><topic>Applied sciences</topic><topic>Conducting polymer</topic><topic>Conductivity</topic><topic>Degradation</topic><topic>Exact sciences and technology</topic><topic>High temperature</topic><topic>Hydrogen bonding</topic><topic>Hydroxyl groups</topic><topic>Physical properties</topic><topic>Polyaniline</topic><topic>Polyanilines</topic><topic>Polymer industry, paints, wood</topic><topic>Properties and testing</topic><topic>Stability</topic><topic>Sulfates</topic><topic>Sulfonates</topic><topic>Technology of polymers</topic><topic>Thermal stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stejskal, Jaroslav</creatorcontrib><creatorcontrib>Prokeš, Jan</creatorcontrib><creatorcontrib>Trchová, Miroslava</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Polymer degradation and stability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stejskal, Jaroslav</au><au>Prokeš, Jan</au><au>Trchová, Miroslava</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reprotonated polyanilines: The stability of conductivity at elevated temperature</atitle><jtitle>Polymer degradation and stability</jtitle><date>2014-04-01</date><risdate>2014</risdate><volume>102</volume><spage>67</spage><epage>73</epage><pages>67-73</pages><issn>0141-3910</issn><eissn>1873-2321</eissn><coden>PDSTDW</coden><abstract>Reprotonation of polyaniline base with various acids opens a way to conducting materials widely differing in physical properties. The thermal stability of the resulting polyaniline salts was tested by measurements of the conductivity at 125 °C for up to 500 h. Polyaniline sulfate was the most stable and its resistivity increased only by 3.6 times after that time. The stability differed considerably depending on the acid used for reprotonation. The room-temperature conductivity of polyaniline salt is determined by the strength of the acid and its ionic bond with the imine nitrogen in polyaniline. The thermal stability of conductivity, however, is controlled by the ability of the acid to constitute hydrogen bonds with the secondary amine nitrogens in polyaniline. For that reason, oxygen-containing counter-ions, such as sulfates or sulfonates, produce more stable salts with polyaniline, compared with polyaniline protonated with, e.g., hydrochloric acid. The presence of hydroxyl group in the counter-ions also enhances the thermal stability of the polyaniline salt. These conclusions are supported by the analysis of FTIR spectra.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.polymdegradstab.2014.02.001</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-9350-9647</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0141-3910 |
ispartof | Polymer degradation and stability, 2014-04, Vol.102, p.67-73 |
issn | 0141-3910 1873-2321 |
language | eng |
recordid | cdi_proquest_miscellaneous_1531000993 |
source | Elsevier ScienceDirect Journals |
subjects | Ageing Applied sciences Conducting polymer Conductivity Degradation Exact sciences and technology High temperature Hydrogen bonding Hydroxyl groups Physical properties Polyaniline Polyanilines Polymer industry, paints, wood Properties and testing Stability Sulfates Sulfonates Technology of polymers Thermal stability |
title | Reprotonated polyanilines: The stability of conductivity at elevated temperature |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T07%3A42%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reprotonated%20polyanilines:%20The%20stability%20of%20conductivity%20at%20elevated%20temperature&rft.jtitle=Polymer%20degradation%20and%20stability&rft.au=Stejskal,%20Jaroslav&rft.date=2014-04-01&rft.volume=102&rft.spage=67&rft.epage=73&rft.pages=67-73&rft.issn=0141-3910&rft.eissn=1873-2321&rft.coden=PDSTDW&rft_id=info:doi/10.1016/j.polymdegradstab.2014.02.001&rft_dat=%3Cproquest_cross%3E1531000993%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1531000993&rft_id=info:pmid/&rft_els_id=S0141391014000494&rfr_iscdi=true |