Perceptual image quality assessment metric using mutual information of Gabor features

A good objective metric of image quality assessment (IQA) should be consistent with the subjective judgment of human beings. In this paper, a four-stage perceptual approach for full reference IQA is presented. In the first stage, the visual features are extracted by 2-D Gabor filter that has the exc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China. Information sciences 2014-02, Vol.57 (3), p.1-9
Hauptverfasser: Ding, Yong, Zhang, Yuan, Wang, Xiang, Yan, XiaoLang, Krylov, Andrey S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9
container_issue 3
container_start_page 1
container_title Science China. Information sciences
container_volume 57
creator Ding, Yong
Zhang, Yuan
Wang, Xiang
Yan, XiaoLang
Krylov, Andrey S.
description A good objective metric of image quality assessment (IQA) should be consistent with the subjective judgment of human beings. In this paper, a four-stage perceptual approach for full reference IQA is presented. In the first stage, the visual features are extracted by 2-D Gabor filter that has the excellent performance of modeling the receptive fields of simple cells in the primary visual cortex. Then in the second stage, the extracted features are post-processed by the divisive normalization transform to reflect the nonlinear mechanisms in human visual systems. In the third stage, mutual information between the visual features of the reference and distorted images is employed to measure the visual quality. And in the last pooling stage, the mutual information is converted to the final objective quality score. Experimental results show that the proposed metic has a high correlation with the subjective assessment and outperforms other state-of-the-art metrics.
doi_str_mv 10.1007/s11432-013-4881-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1530999604</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918536162</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-5811900b5c7b015ffb3bba0be1dfcc45c40fae14f6cf60994e447533a18bfb523</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouKz7A7wFvHipZpqkbY6y6CoIenDBW0jiZOnSj92kPfTfm6WCIDiXmcPzvgwPIdfA7oCx8j4CCJ5nDHgmqgqy6YwsoCpUBgrUebqLUmQl55-XZBXjnqXhnOVltSDbdwwOD8NoGlq3Zof0mM56mKiJEWNssRtoi0OoHR1j3e1oO85w5_vQmqHuO9p7ujG2D9SjGcaA8YpceNNEXP3sJdk-PX6sn7PXt83L-uE1cwLkkMkKQDFmpSstA-m95dYaZhG-vHNCOsG8QRC-cL5gSgkUopScG6istzLnS3I79x5CfxwxDrqto8OmMR32Y9QgeYqpgomE3vxB9_0YuvSdzhVUkhdQnAphplzoYwzo9SEkLWHSwPTJtZ5d6-Ran1zrKWXyORMT2-0w_Db_H_oGwq2Czg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918536162</pqid></control><display><type>article</type><title>Perceptual image quality assessment metric using mutual information of Gabor features</title><source>SpringerLink Journals</source><source>Alma/SFX Local Collection</source><source>ProQuest Central</source><creator>Ding, Yong ; Zhang, Yuan ; Wang, Xiang ; Yan, XiaoLang ; Krylov, Andrey S.</creator><creatorcontrib>Ding, Yong ; Zhang, Yuan ; Wang, Xiang ; Yan, XiaoLang ; Krylov, Andrey S.</creatorcontrib><description>A good objective metric of image quality assessment (IQA) should be consistent with the subjective judgment of human beings. In this paper, a four-stage perceptual approach for full reference IQA is presented. In the first stage, the visual features are extracted by 2-D Gabor filter that has the excellent performance of modeling the receptive fields of simple cells in the primary visual cortex. Then in the second stage, the extracted features are post-processed by the divisive normalization transform to reflect the nonlinear mechanisms in human visual systems. In the third stage, mutual information between the visual features of the reference and distorted images is employed to measure the visual quality. And in the last pooling stage, the mutual information is converted to the final objective quality score. Experimental results show that the proposed metic has a high correlation with the subjective assessment and outperforms other state-of-the-art metrics.</description><identifier>ISSN: 1674-733X</identifier><identifier>EISSN: 1869-1919</identifier><identifier>DOI: 10.1007/s11432-013-4881-y</identifier><language>eng</language><publisher>Heidelberg: Science China Press</publisher><subject>Assessments ; China ; Computer Science ; Distortion ; Gabor filters ; Human ; Human beings ; Image quality ; Information Systems and Communication Service ; Quality assessment ; Research Paper ; State of the art ; Subjective assessment ; Visual</subject><ispartof>Science China. Information sciences, 2014-02, Vol.57 (3), p.1-9</ispartof><rights>Science China Press and Springer-Verlag Berlin Heidelberg 2014</rights><rights>Science China Press and Springer-Verlag Berlin Heidelberg 2014.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-5811900b5c7b015ffb3bba0be1dfcc45c40fae14f6cf60994e447533a18bfb523</citedby><cites>FETCH-LOGICAL-c415t-5811900b5c7b015ffb3bba0be1dfcc45c40fae14f6cf60994e447533a18bfb523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11432-013-4881-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918536162?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,33722,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Ding, Yong</creatorcontrib><creatorcontrib>Zhang, Yuan</creatorcontrib><creatorcontrib>Wang, Xiang</creatorcontrib><creatorcontrib>Yan, XiaoLang</creatorcontrib><creatorcontrib>Krylov, Andrey S.</creatorcontrib><title>Perceptual image quality assessment metric using mutual information of Gabor features</title><title>Science China. Information sciences</title><addtitle>Sci. China Inf. Sci</addtitle><description>A good objective metric of image quality assessment (IQA) should be consistent with the subjective judgment of human beings. In this paper, a four-stage perceptual approach for full reference IQA is presented. In the first stage, the visual features are extracted by 2-D Gabor filter that has the excellent performance of modeling the receptive fields of simple cells in the primary visual cortex. Then in the second stage, the extracted features are post-processed by the divisive normalization transform to reflect the nonlinear mechanisms in human visual systems. In the third stage, mutual information between the visual features of the reference and distorted images is employed to measure the visual quality. And in the last pooling stage, the mutual information is converted to the final objective quality score. Experimental results show that the proposed metic has a high correlation with the subjective assessment and outperforms other state-of-the-art metrics.</description><subject>Assessments</subject><subject>China</subject><subject>Computer Science</subject><subject>Distortion</subject><subject>Gabor filters</subject><subject>Human</subject><subject>Human beings</subject><subject>Image quality</subject><subject>Information Systems and Communication Service</subject><subject>Quality assessment</subject><subject>Research Paper</subject><subject>State of the art</subject><subject>Subjective assessment</subject><subject>Visual</subject><issn>1674-733X</issn><issn>1869-1919</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kE1LxDAQhoMouKz7A7wFvHipZpqkbY6y6CoIenDBW0jiZOnSj92kPfTfm6WCIDiXmcPzvgwPIdfA7oCx8j4CCJ5nDHgmqgqy6YwsoCpUBgrUebqLUmQl55-XZBXjnqXhnOVltSDbdwwOD8NoGlq3Zof0mM56mKiJEWNssRtoi0OoHR1j3e1oO85w5_vQmqHuO9p7ujG2D9SjGcaA8YpceNNEXP3sJdk-PX6sn7PXt83L-uE1cwLkkMkKQDFmpSstA-m95dYaZhG-vHNCOsG8QRC-cL5gSgkUopScG6istzLnS3I79x5CfxwxDrqto8OmMR32Y9QgeYqpgomE3vxB9_0YuvSdzhVUkhdQnAphplzoYwzo9SEkLWHSwPTJtZ5d6-Ran1zrKWXyORMT2-0w_Db_H_oGwq2Czg</recordid><startdate>201402</startdate><enddate>201402</enddate><creator>Ding, Yong</creator><creator>Zhang, Yuan</creator><creator>Wang, Xiang</creator><creator>Yan, XiaoLang</creator><creator>Krylov, Andrey S.</creator><general>Science China Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7SC</scope><scope>8FD</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201402</creationdate><title>Perceptual image quality assessment metric using mutual information of Gabor features</title><author>Ding, Yong ; Zhang, Yuan ; Wang, Xiang ; Yan, XiaoLang ; Krylov, Andrey S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-5811900b5c7b015ffb3bba0be1dfcc45c40fae14f6cf60994e447533a18bfb523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Assessments</topic><topic>China</topic><topic>Computer Science</topic><topic>Distortion</topic><topic>Gabor filters</topic><topic>Human</topic><topic>Human beings</topic><topic>Image quality</topic><topic>Information Systems and Communication Service</topic><topic>Quality assessment</topic><topic>Research Paper</topic><topic>State of the art</topic><topic>Subjective assessment</topic><topic>Visual</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, Yong</creatorcontrib><creatorcontrib>Zhang, Yuan</creatorcontrib><creatorcontrib>Wang, Xiang</creatorcontrib><creatorcontrib>Yan, XiaoLang</creatorcontrib><creatorcontrib>Krylov, Andrey S.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Science China. Information sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, Yong</au><au>Zhang, Yuan</au><au>Wang, Xiang</au><au>Yan, XiaoLang</au><au>Krylov, Andrey S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Perceptual image quality assessment metric using mutual information of Gabor features</atitle><jtitle>Science China. Information sciences</jtitle><stitle>Sci. China Inf. Sci</stitle><date>2014-02</date><risdate>2014</risdate><volume>57</volume><issue>3</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>1674-733X</issn><eissn>1869-1919</eissn><abstract>A good objective metric of image quality assessment (IQA) should be consistent with the subjective judgment of human beings. In this paper, a four-stage perceptual approach for full reference IQA is presented. In the first stage, the visual features are extracted by 2-D Gabor filter that has the excellent performance of modeling the receptive fields of simple cells in the primary visual cortex. Then in the second stage, the extracted features are post-processed by the divisive normalization transform to reflect the nonlinear mechanisms in human visual systems. In the third stage, mutual information between the visual features of the reference and distorted images is employed to measure the visual quality. And in the last pooling stage, the mutual information is converted to the final objective quality score. Experimental results show that the proposed metic has a high correlation with the subjective assessment and outperforms other state-of-the-art metrics.</abstract><cop>Heidelberg</cop><pub>Science China Press</pub><doi>10.1007/s11432-013-4881-y</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1674-733X
ispartof Science China. Information sciences, 2014-02, Vol.57 (3), p.1-9
issn 1674-733X
1869-1919
language eng
recordid cdi_proquest_miscellaneous_1530999604
source SpringerLink Journals; Alma/SFX Local Collection; ProQuest Central
subjects Assessments
China
Computer Science
Distortion
Gabor filters
Human
Human beings
Image quality
Information Systems and Communication Service
Quality assessment
Research Paper
State of the art
Subjective assessment
Visual
title Perceptual image quality assessment metric using mutual information of Gabor features
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T02%3A39%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Perceptual%20image%20quality%20assessment%20metric%20using%20mutual%20information%20of%20Gabor%20features&rft.jtitle=Science%20China.%20Information%20sciences&rft.au=Ding,%20Yong&rft.date=2014-02&rft.volume=57&rft.issue=3&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=1674-733X&rft.eissn=1869-1919&rft_id=info:doi/10.1007/s11432-013-4881-y&rft_dat=%3Cproquest_cross%3E2918536162%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918536162&rft_id=info:pmid/&rfr_iscdi=true