Perceptual image quality assessment metric using mutual information of Gabor features
A good objective metric of image quality assessment (IQA) should be consistent with the subjective judgment of human beings. In this paper, a four-stage perceptual approach for full reference IQA is presented. In the first stage, the visual features are extracted by 2-D Gabor filter that has the exc...
Gespeichert in:
Veröffentlicht in: | Science China. Information sciences 2014-02, Vol.57 (3), p.1-9 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9 |
---|---|
container_issue | 3 |
container_start_page | 1 |
container_title | Science China. Information sciences |
container_volume | 57 |
creator | Ding, Yong Zhang, Yuan Wang, Xiang Yan, XiaoLang Krylov, Andrey S. |
description | A good objective metric of image quality assessment (IQA) should be consistent with the subjective judgment of human beings. In this paper, a four-stage perceptual approach for full reference IQA is presented. In the first stage, the visual features are extracted by 2-D Gabor filter that has the excellent performance of modeling the receptive fields of simple cells in the primary visual cortex. Then in the second stage, the extracted features are post-processed by the divisive normalization transform to reflect the nonlinear mechanisms in human visual systems. In the third stage, mutual information between the visual features of the reference and distorted images is employed to measure the visual quality. And in the last pooling stage, the mutual information is converted to the final objective quality score. Experimental results show that the proposed metic has a high correlation with the subjective assessment and outperforms other state-of-the-art metrics. |
doi_str_mv | 10.1007/s11432-013-4881-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1530999604</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918536162</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-5811900b5c7b015ffb3bba0be1dfcc45c40fae14f6cf60994e447533a18bfb523</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouKz7A7wFvHipZpqkbY6y6CoIenDBW0jiZOnSj92kPfTfm6WCIDiXmcPzvgwPIdfA7oCx8j4CCJ5nDHgmqgqy6YwsoCpUBgrUebqLUmQl55-XZBXjnqXhnOVltSDbdwwOD8NoGlq3Zof0mM56mKiJEWNssRtoi0OoHR1j3e1oO85w5_vQmqHuO9p7ujG2D9SjGcaA8YpceNNEXP3sJdk-PX6sn7PXt83L-uE1cwLkkMkKQDFmpSstA-m95dYaZhG-vHNCOsG8QRC-cL5gSgkUopScG6istzLnS3I79x5CfxwxDrqto8OmMR32Y9QgeYqpgomE3vxB9_0YuvSdzhVUkhdQnAphplzoYwzo9SEkLWHSwPTJtZ5d6-Ran1zrKWXyORMT2-0w_Db_H_oGwq2Czg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918536162</pqid></control><display><type>article</type><title>Perceptual image quality assessment metric using mutual information of Gabor features</title><source>SpringerLink Journals</source><source>Alma/SFX Local Collection</source><source>ProQuest Central</source><creator>Ding, Yong ; Zhang, Yuan ; Wang, Xiang ; Yan, XiaoLang ; Krylov, Andrey S.</creator><creatorcontrib>Ding, Yong ; Zhang, Yuan ; Wang, Xiang ; Yan, XiaoLang ; Krylov, Andrey S.</creatorcontrib><description>A good objective metric of image quality assessment (IQA) should be consistent with the subjective judgment of human beings. In this paper, a four-stage perceptual approach for full reference IQA is presented. In the first stage, the visual features are extracted by 2-D Gabor filter that has the excellent performance of modeling the receptive fields of simple cells in the primary visual cortex. Then in the second stage, the extracted features are post-processed by the divisive normalization transform to reflect the nonlinear mechanisms in human visual systems. In the third stage, mutual information between the visual features of the reference and distorted images is employed to measure the visual quality. And in the last pooling stage, the mutual information is converted to the final objective quality score. Experimental results show that the proposed metic has a high correlation with the subjective assessment and outperforms other state-of-the-art metrics.</description><identifier>ISSN: 1674-733X</identifier><identifier>EISSN: 1869-1919</identifier><identifier>DOI: 10.1007/s11432-013-4881-y</identifier><language>eng</language><publisher>Heidelberg: Science China Press</publisher><subject>Assessments ; China ; Computer Science ; Distortion ; Gabor filters ; Human ; Human beings ; Image quality ; Information Systems and Communication Service ; Quality assessment ; Research Paper ; State of the art ; Subjective assessment ; Visual</subject><ispartof>Science China. Information sciences, 2014-02, Vol.57 (3), p.1-9</ispartof><rights>Science China Press and Springer-Verlag Berlin Heidelberg 2014</rights><rights>Science China Press and Springer-Verlag Berlin Heidelberg 2014.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-5811900b5c7b015ffb3bba0be1dfcc45c40fae14f6cf60994e447533a18bfb523</citedby><cites>FETCH-LOGICAL-c415t-5811900b5c7b015ffb3bba0be1dfcc45c40fae14f6cf60994e447533a18bfb523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11432-013-4881-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918536162?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,33722,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Ding, Yong</creatorcontrib><creatorcontrib>Zhang, Yuan</creatorcontrib><creatorcontrib>Wang, Xiang</creatorcontrib><creatorcontrib>Yan, XiaoLang</creatorcontrib><creatorcontrib>Krylov, Andrey S.</creatorcontrib><title>Perceptual image quality assessment metric using mutual information of Gabor features</title><title>Science China. Information sciences</title><addtitle>Sci. China Inf. Sci</addtitle><description>A good objective metric of image quality assessment (IQA) should be consistent with the subjective judgment of human beings. In this paper, a four-stage perceptual approach for full reference IQA is presented. In the first stage, the visual features are extracted by 2-D Gabor filter that has the excellent performance of modeling the receptive fields of simple cells in the primary visual cortex. Then in the second stage, the extracted features are post-processed by the divisive normalization transform to reflect the nonlinear mechanisms in human visual systems. In the third stage, mutual information between the visual features of the reference and distorted images is employed to measure the visual quality. And in the last pooling stage, the mutual information is converted to the final objective quality score. Experimental results show that the proposed metic has a high correlation with the subjective assessment and outperforms other state-of-the-art metrics.</description><subject>Assessments</subject><subject>China</subject><subject>Computer Science</subject><subject>Distortion</subject><subject>Gabor filters</subject><subject>Human</subject><subject>Human beings</subject><subject>Image quality</subject><subject>Information Systems and Communication Service</subject><subject>Quality assessment</subject><subject>Research Paper</subject><subject>State of the art</subject><subject>Subjective assessment</subject><subject>Visual</subject><issn>1674-733X</issn><issn>1869-1919</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kE1LxDAQhoMouKz7A7wFvHipZpqkbY6y6CoIenDBW0jiZOnSj92kPfTfm6WCIDiXmcPzvgwPIdfA7oCx8j4CCJ5nDHgmqgqy6YwsoCpUBgrUebqLUmQl55-XZBXjnqXhnOVltSDbdwwOD8NoGlq3Zof0mM56mKiJEWNssRtoi0OoHR1j3e1oO85w5_vQmqHuO9p7ujG2D9SjGcaA8YpceNNEXP3sJdk-PX6sn7PXt83L-uE1cwLkkMkKQDFmpSstA-m95dYaZhG-vHNCOsG8QRC-cL5gSgkUopScG6istzLnS3I79x5CfxwxDrqto8OmMR32Y9QgeYqpgomE3vxB9_0YuvSdzhVUkhdQnAphplzoYwzo9SEkLWHSwPTJtZ5d6-Ran1zrKWXyORMT2-0w_Db_H_oGwq2Czg</recordid><startdate>201402</startdate><enddate>201402</enddate><creator>Ding, Yong</creator><creator>Zhang, Yuan</creator><creator>Wang, Xiang</creator><creator>Yan, XiaoLang</creator><creator>Krylov, Andrey S.</creator><general>Science China Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7SC</scope><scope>8FD</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201402</creationdate><title>Perceptual image quality assessment metric using mutual information of Gabor features</title><author>Ding, Yong ; Zhang, Yuan ; Wang, Xiang ; Yan, XiaoLang ; Krylov, Andrey S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-5811900b5c7b015ffb3bba0be1dfcc45c40fae14f6cf60994e447533a18bfb523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Assessments</topic><topic>China</topic><topic>Computer Science</topic><topic>Distortion</topic><topic>Gabor filters</topic><topic>Human</topic><topic>Human beings</topic><topic>Image quality</topic><topic>Information Systems and Communication Service</topic><topic>Quality assessment</topic><topic>Research Paper</topic><topic>State of the art</topic><topic>Subjective assessment</topic><topic>Visual</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, Yong</creatorcontrib><creatorcontrib>Zhang, Yuan</creatorcontrib><creatorcontrib>Wang, Xiang</creatorcontrib><creatorcontrib>Yan, XiaoLang</creatorcontrib><creatorcontrib>Krylov, Andrey S.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Science China. Information sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, Yong</au><au>Zhang, Yuan</au><au>Wang, Xiang</au><au>Yan, XiaoLang</au><au>Krylov, Andrey S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Perceptual image quality assessment metric using mutual information of Gabor features</atitle><jtitle>Science China. Information sciences</jtitle><stitle>Sci. China Inf. Sci</stitle><date>2014-02</date><risdate>2014</risdate><volume>57</volume><issue>3</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>1674-733X</issn><eissn>1869-1919</eissn><abstract>A good objective metric of image quality assessment (IQA) should be consistent with the subjective judgment of human beings. In this paper, a four-stage perceptual approach for full reference IQA is presented. In the first stage, the visual features are extracted by 2-D Gabor filter that has the excellent performance of modeling the receptive fields of simple cells in the primary visual cortex. Then in the second stage, the extracted features are post-processed by the divisive normalization transform to reflect the nonlinear mechanisms in human visual systems. In the third stage, mutual information between the visual features of the reference and distorted images is employed to measure the visual quality. And in the last pooling stage, the mutual information is converted to the final objective quality score. Experimental results show that the proposed metic has a high correlation with the subjective assessment and outperforms other state-of-the-art metrics.</abstract><cop>Heidelberg</cop><pub>Science China Press</pub><doi>10.1007/s11432-013-4881-y</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1674-733X |
ispartof | Science China. Information sciences, 2014-02, Vol.57 (3), p.1-9 |
issn | 1674-733X 1869-1919 |
language | eng |
recordid | cdi_proquest_miscellaneous_1530999604 |
source | SpringerLink Journals; Alma/SFX Local Collection; ProQuest Central |
subjects | Assessments China Computer Science Distortion Gabor filters Human Human beings Image quality Information Systems and Communication Service Quality assessment Research Paper State of the art Subjective assessment Visual |
title | Perceptual image quality assessment metric using mutual information of Gabor features |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T02%3A39%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Perceptual%20image%20quality%20assessment%20metric%20using%20mutual%20information%20of%20Gabor%20features&rft.jtitle=Science%20China.%20Information%20sciences&rft.au=Ding,%20Yong&rft.date=2014-02&rft.volume=57&rft.issue=3&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=1674-733X&rft.eissn=1869-1919&rft_id=info:doi/10.1007/s11432-013-4881-y&rft_dat=%3Cproquest_cross%3E2918536162%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918536162&rft_id=info:pmid/&rfr_iscdi=true |