Investigation of cation self-diffusion mechanisms in UO2 plus or minus x using molecular dynamics

This article is devoted to investigation of cation self-diffusion mechanisms, taking place in UO2, UO2+x, and UO2-x crystals simulated under periodic (PBC) and isolated (IBC) boundary conditions using the method of molecular dynamics in the approximation of rigid ions and pair interactions. It is sh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nuclear materials 2013-11, Vol.442 (1-3), p.148-161
Hauptverfasser: Boyarchenkov, A S, Potashnikov, SI, Nekrasov, KA, Kupryazhkin, AYa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 161
container_issue 1-3
container_start_page 148
container_title Journal of nuclear materials
container_volume 442
creator Boyarchenkov, A S
Potashnikov, SI
Nekrasov, KA
Kupryazhkin, AYa
description This article is devoted to investigation of cation self-diffusion mechanisms, taking place in UO2, UO2+x, and UO2-x crystals simulated under periodic (PBC) and isolated (IBC) boundary conditions using the method of molecular dynamics in the approximation of rigid ions and pair interactions. It is shown that under PBC the cations diffuse via an exchange mechanism (with the formation of Frenkel defects) with activation energy of 15-22 eV, while under IBC there is competition between the exchange and vacancy (via Schottky defects) diffusion mechanisms, which give the effective activation energy of 11-13 eV near the melting temperature of the simulated UO2.00 nanocrystals. Vacancy diffusion with lower activation energy of 6-7 eV was dominant in the non-stoichiometric crystals UO2.10, UO2.15 and UO1.85. Observations showed that a cation vacancy is accompanied by different number of anion vacancies depending on the deviation from stoichiometry: no vacancies in UO2.15, single vacancy in UO2.00 and four vacancies in UO1.85. The corresponding law of mass action formulas derived within the Lidiard-Matzke model allowed explaining the obtained activation energies and predicting a change in the activation energy within the temperature range of the superionic phase transition. The diffusion of cations on the surface of nanocrystals had activation energy of 3.1-3.6 eV.
doi_str_mv 10.1016/j.jnucmat.2013.08.030
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1530999250</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1530999250</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_15309992503</originalsourceid><addsrcrecordid>eNqVjc1KAzEURrOwYP15BOEu3Uy8SYg4a1Hqqhtdl5AmNUNyU-dOSn37jtgX6Oo7Hxw4QjwolArV89MgB2q-uElqVEbii0SDV2KJqHVnlLLX4oZ5QETbo10K90GHwFPauSlVghrB_xOHHLttirHx3y3BfztKXBgSwddawz43hjpCSTTDEWaPdlBqDr5lN8L2l1xJnu_EIrrM4f68t-Lx_e3zddXtx_rT5vamJPYhZ0ehNt4oa7Dve23RXKCeAOILUHg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1530999250</pqid></control><display><type>article</type><title>Investigation of cation self-diffusion mechanisms in UO2 plus or minus x using molecular dynamics</title><source>Access via ScienceDirect (Elsevier)</source><creator>Boyarchenkov, A S ; Potashnikov, SI ; Nekrasov, KA ; Kupryazhkin, AYa</creator><creatorcontrib>Boyarchenkov, A S ; Potashnikov, SI ; Nekrasov, KA ; Kupryazhkin, AYa</creatorcontrib><description>This article is devoted to investigation of cation self-diffusion mechanisms, taking place in UO2, UO2+x, and UO2-x crystals simulated under periodic (PBC) and isolated (IBC) boundary conditions using the method of molecular dynamics in the approximation of rigid ions and pair interactions. It is shown that under PBC the cations diffuse via an exchange mechanism (with the formation of Frenkel defects) with activation energy of 15-22 eV, while under IBC there is competition between the exchange and vacancy (via Schottky defects) diffusion mechanisms, which give the effective activation energy of 11-13 eV near the melting temperature of the simulated UO2.00 nanocrystals. Vacancy diffusion with lower activation energy of 6-7 eV was dominant in the non-stoichiometric crystals UO2.10, UO2.15 and UO1.85. Observations showed that a cation vacancy is accompanied by different number of anion vacancies depending on the deviation from stoichiometry: no vacancies in UO2.15, single vacancy in UO2.00 and four vacancies in UO1.85. The corresponding law of mass action formulas derived within the Lidiard-Matzke model allowed explaining the obtained activation energies and predicting a change in the activation energy within the temperature range of the superionic phase transition. The diffusion of cations on the surface of nanocrystals had activation energy of 3.1-3.6 eV.</description><identifier>ISSN: 0022-3115</identifier><identifier>DOI: 10.1016/j.jnucmat.2013.08.030</identifier><language>eng</language><subject>Activation energy ; Cations ; Crystals ; Diffusion ; Mathematical models ; Molecular dynamics ; Simulation ; Vacancies</subject><ispartof>Journal of nuclear materials, 2013-11, Vol.442 (1-3), p.148-161</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Boyarchenkov, A S</creatorcontrib><creatorcontrib>Potashnikov, SI</creatorcontrib><creatorcontrib>Nekrasov, KA</creatorcontrib><creatorcontrib>Kupryazhkin, AYa</creatorcontrib><title>Investigation of cation self-diffusion mechanisms in UO2 plus or minus x using molecular dynamics</title><title>Journal of nuclear materials</title><description>This article is devoted to investigation of cation self-diffusion mechanisms, taking place in UO2, UO2+x, and UO2-x crystals simulated under periodic (PBC) and isolated (IBC) boundary conditions using the method of molecular dynamics in the approximation of rigid ions and pair interactions. It is shown that under PBC the cations diffuse via an exchange mechanism (with the formation of Frenkel defects) with activation energy of 15-22 eV, while under IBC there is competition between the exchange and vacancy (via Schottky defects) diffusion mechanisms, which give the effective activation energy of 11-13 eV near the melting temperature of the simulated UO2.00 nanocrystals. Vacancy diffusion with lower activation energy of 6-7 eV was dominant in the non-stoichiometric crystals UO2.10, UO2.15 and UO1.85. Observations showed that a cation vacancy is accompanied by different number of anion vacancies depending on the deviation from stoichiometry: no vacancies in UO2.15, single vacancy in UO2.00 and four vacancies in UO1.85. The corresponding law of mass action formulas derived within the Lidiard-Matzke model allowed explaining the obtained activation energies and predicting a change in the activation energy within the temperature range of the superionic phase transition. The diffusion of cations on the surface of nanocrystals had activation energy of 3.1-3.6 eV.</description><subject>Activation energy</subject><subject>Cations</subject><subject>Crystals</subject><subject>Diffusion</subject><subject>Mathematical models</subject><subject>Molecular dynamics</subject><subject>Simulation</subject><subject>Vacancies</subject><issn>0022-3115</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqVjc1KAzEURrOwYP15BOEu3Uy8SYg4a1Hqqhtdl5AmNUNyU-dOSn37jtgX6Oo7Hxw4QjwolArV89MgB2q-uElqVEbii0SDV2KJqHVnlLLX4oZ5QETbo10K90GHwFPauSlVghrB_xOHHLttirHx3y3BfztKXBgSwddawz43hjpCSTTDEWaPdlBqDr5lN8L2l1xJnu_EIrrM4f68t-Lx_e3zddXtx_rT5vamJPYhZ0ehNt4oa7Dve23RXKCeAOILUHg</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>Boyarchenkov, A S</creator><creator>Potashnikov, SI</creator><creator>Nekrasov, KA</creator><creator>Kupryazhkin, AYa</creator><scope>7SC</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20131101</creationdate><title>Investigation of cation self-diffusion mechanisms in UO2 plus or minus x using molecular dynamics</title><author>Boyarchenkov, A S ; Potashnikov, SI ; Nekrasov, KA ; Kupryazhkin, AYa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_15309992503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Activation energy</topic><topic>Cations</topic><topic>Crystals</topic><topic>Diffusion</topic><topic>Mathematical models</topic><topic>Molecular dynamics</topic><topic>Simulation</topic><topic>Vacancies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boyarchenkov, A S</creatorcontrib><creatorcontrib>Potashnikov, SI</creatorcontrib><creatorcontrib>Nekrasov, KA</creatorcontrib><creatorcontrib>Kupryazhkin, AYa</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of nuclear materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boyarchenkov, A S</au><au>Potashnikov, SI</au><au>Nekrasov, KA</au><au>Kupryazhkin, AYa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation of cation self-diffusion mechanisms in UO2 plus or minus x using molecular dynamics</atitle><jtitle>Journal of nuclear materials</jtitle><date>2013-11-01</date><risdate>2013</risdate><volume>442</volume><issue>1-3</issue><spage>148</spage><epage>161</epage><pages>148-161</pages><issn>0022-3115</issn><abstract>This article is devoted to investigation of cation self-diffusion mechanisms, taking place in UO2, UO2+x, and UO2-x crystals simulated under periodic (PBC) and isolated (IBC) boundary conditions using the method of molecular dynamics in the approximation of rigid ions and pair interactions. It is shown that under PBC the cations diffuse via an exchange mechanism (with the formation of Frenkel defects) with activation energy of 15-22 eV, while under IBC there is competition between the exchange and vacancy (via Schottky defects) diffusion mechanisms, which give the effective activation energy of 11-13 eV near the melting temperature of the simulated UO2.00 nanocrystals. Vacancy diffusion with lower activation energy of 6-7 eV was dominant in the non-stoichiometric crystals UO2.10, UO2.15 and UO1.85. Observations showed that a cation vacancy is accompanied by different number of anion vacancies depending on the deviation from stoichiometry: no vacancies in UO2.15, single vacancy in UO2.00 and four vacancies in UO1.85. The corresponding law of mass action formulas derived within the Lidiard-Matzke model allowed explaining the obtained activation energies and predicting a change in the activation energy within the temperature range of the superionic phase transition. The diffusion of cations on the surface of nanocrystals had activation energy of 3.1-3.6 eV.</abstract><doi>10.1016/j.jnucmat.2013.08.030</doi></addata></record>
fulltext fulltext
identifier ISSN: 0022-3115
ispartof Journal of nuclear materials, 2013-11, Vol.442 (1-3), p.148-161
issn 0022-3115
language eng
recordid cdi_proquest_miscellaneous_1530999250
source Access via ScienceDirect (Elsevier)
subjects Activation energy
Cations
Crystals
Diffusion
Mathematical models
Molecular dynamics
Simulation
Vacancies
title Investigation of cation self-diffusion mechanisms in UO2 plus or minus x using molecular dynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T02%3A59%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20of%20cation%20self-diffusion%20mechanisms%20in%20UO2%20plus%20or%20minus%20x%20using%20molecular%20dynamics&rft.jtitle=Journal%20of%20nuclear%20materials&rft.au=Boyarchenkov,%20A%20S&rft.date=2013-11-01&rft.volume=442&rft.issue=1-3&rft.spage=148&rft.epage=161&rft.pages=148-161&rft.issn=0022-3115&rft_id=info:doi/10.1016/j.jnucmat.2013.08.030&rft_dat=%3Cproquest%3E1530999250%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1530999250&rft_id=info:pmid/&rfr_iscdi=true