The Nonlinear Heat Equation on W-Random Graphs

For systems of coupled differential equations on a sequence of W -random graphs, we derive the continuum limit in the form of an evolution integral equation. We prove that solutions of the initial value problems (IVPs) for the discrete model converge to the solution of the IVP for its continuum limi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archive for rational mechanics and analysis 2014-06, Vol.212 (3), p.781-803
1. Verfasser: Medvedev, Georgi S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For systems of coupled differential equations on a sequence of W -random graphs, we derive the continuum limit in the form of an evolution integral equation. We prove that solutions of the initial value problems (IVPs) for the discrete model converge to the solution of the IVP for its continuum limit. These results combined with the analysis of nonlocally coupled deterministic networks in Medvedev (The nonlinear heat equation on dense graphs and graph limits. ArXiv e-prints, 2013 ) justify the continuum (thermodynamic) limit for a large class of coupled dynamical systems on convergent families of graphs.
ISSN:0003-9527
1432-0673
DOI:10.1007/s00205-013-0706-9