Synthesis and analysis of distributed ensemble control strategies for allocation to multiple tasks
We present the synthesis and analysis of distributed ensemble control policies to enable a team of robots to control their distribution across a collection of tasks. We assume that individual robot controllers are modeled as a sequential composition of individual task controllers. A macroscopic desc...
Gespeichert in:
Veröffentlicht in: | Robotica 2014-03, Vol.32 (2), p.177-192 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 192 |
---|---|
container_issue | 2 |
container_start_page | 177 |
container_title | Robotica |
container_volume | 32 |
creator | Mather, T. William Hsieh, M. Ani |
description | We present the synthesis and analysis of distributed ensemble control policies to enable a team of robots to control their distribution across a collection of tasks. We assume that individual robot controllers are modeled as a sequential composition of individual task controllers. A macroscopic description of the team dynamics is then used to synthesize ensemble feedback control strategies that maintain the desired distribution of robots across the tasks. We present a distributed implementation of the ensemble feedback strategy that can be implemented with minimal communication requirements. Different from existing strategies, the approach results in individual robot control policies that maintain the desired mean and the variance of the robot populations at each task. We present the stability properties of the ensemble feedback strategy, verify the feasibility of the distributed ensemble controller through high-fidelity simulations, and examine the robustness of the strategy to sensing and/or actuation failures. Specifically, we consider the case when robots are subject to estimation and navigation errors resulting from lossy inter-agent wireless communication links and localization errors. |
doi_str_mv | 10.1017/S0263574713000994 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1530994014</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0263574713000994</cupid><sourcerecordid>1530994014</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-9efa24cb2a6e4ef41ad08306d4bb8f8804a35f1f93297caf226b60660286936d3</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYMouK5-AG8BL16qkyZNm6Ms_gPBw-q5JG2yRtNmTdLDfntT3IMoHoZheL_3YB5C5wSuCJD6eg0lp1XNakIBQAh2gBaEcVE0nDeHaDHLxawfo5MY3wEIJaxeILXejelNRxuxHPs80u3mwxvc25iCVVPSPdZj1INyGnd-TME7nCWZ9MbqiI0PWDrnO5msH3HyeJhcsttMJxk_4ik6MtJFfbbfS_R6d_uyeiienu8fVzdPRUcrSIXQRpasU6XkmmnDiOyhocB7plRjmgaYpJUhRtBS1J00ZckVB86hbLigvKdLdPmduw3-c9IxtYONnXZOjtpPsSUVnYsBwjJ68Qt991PIv89UbpABE1WmyDfVBR9j0KbdBjvIsGsJtHPr7Z_Ws4fuPXJQwfYb_SP6X9cXFe-Erg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1513040495</pqid></control><display><type>article</type><title>Synthesis and analysis of distributed ensemble control strategies for allocation to multiple tasks</title><source>Cambridge University Press Journals Complete</source><creator>Mather, T. William ; Hsieh, M. Ani</creator><creatorcontrib>Mather, T. William ; Hsieh, M. Ani</creatorcontrib><description>We present the synthesis and analysis of distributed ensemble control policies to enable a team of robots to control their distribution across a collection of tasks. We assume that individual robot controllers are modeled as a sequential composition of individual task controllers. A macroscopic description of the team dynamics is then used to synthesize ensemble feedback control strategies that maintain the desired distribution of robots across the tasks. We present a distributed implementation of the ensemble feedback strategy that can be implemented with minimal communication requirements. Different from existing strategies, the approach results in individual robot control policies that maintain the desired mean and the variance of the robot populations at each task. We present the stability properties of the ensemble feedback strategy, verify the feasibility of the distributed ensemble controller through high-fidelity simulations, and examine the robustness of the strategy to sensing and/or actuation failures. Specifically, we consider the case when robots are subject to estimation and navigation errors resulting from lossy inter-agent wireless communication links and localization errors.</description><identifier>ISSN: 0263-5747</identifier><identifier>EISSN: 1469-8668</identifier><identifier>DOI: 10.1017/S0263574713000994</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Control theory ; Controllers ; Feedback ; Policies ; Robot control ; Robots ; Strategy ; Tasks</subject><ispartof>Robotica, 2014-03, Vol.32 (2), p.177-192</ispartof><rights>Copyright © Cambridge University Press 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-9efa24cb2a6e4ef41ad08306d4bb8f8804a35f1f93297caf226b60660286936d3</citedby><cites>FETCH-LOGICAL-c350t-9efa24cb2a6e4ef41ad08306d4bb8f8804a35f1f93297caf226b60660286936d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0263574713000994/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids></links><search><creatorcontrib>Mather, T. William</creatorcontrib><creatorcontrib>Hsieh, M. Ani</creatorcontrib><title>Synthesis and analysis of distributed ensemble control strategies for allocation to multiple tasks</title><title>Robotica</title><addtitle>Robotica</addtitle><description>We present the synthesis and analysis of distributed ensemble control policies to enable a team of robots to control their distribution across a collection of tasks. We assume that individual robot controllers are modeled as a sequential composition of individual task controllers. A macroscopic description of the team dynamics is then used to synthesize ensemble feedback control strategies that maintain the desired distribution of robots across the tasks. We present a distributed implementation of the ensemble feedback strategy that can be implemented with minimal communication requirements. Different from existing strategies, the approach results in individual robot control policies that maintain the desired mean and the variance of the robot populations at each task. We present the stability properties of the ensemble feedback strategy, verify the feasibility of the distributed ensemble controller through high-fidelity simulations, and examine the robustness of the strategy to sensing and/or actuation failures. Specifically, we consider the case when robots are subject to estimation and navigation errors resulting from lossy inter-agent wireless communication links and localization errors.</description><subject>Control theory</subject><subject>Controllers</subject><subject>Feedback</subject><subject>Policies</subject><subject>Robot control</subject><subject>Robots</subject><subject>Strategy</subject><subject>Tasks</subject><issn>0263-5747</issn><issn>1469-8668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kE9LxDAQxYMouK5-AG8BL16qkyZNm6Ms_gPBw-q5JG2yRtNmTdLDfntT3IMoHoZheL_3YB5C5wSuCJD6eg0lp1XNakIBQAh2gBaEcVE0nDeHaDHLxawfo5MY3wEIJaxeILXejelNRxuxHPs80u3mwxvc25iCVVPSPdZj1INyGnd-TME7nCWZ9MbqiI0PWDrnO5msH3HyeJhcsttMJxk_4ik6MtJFfbbfS_R6d_uyeiienu8fVzdPRUcrSIXQRpasU6XkmmnDiOyhocB7plRjmgaYpJUhRtBS1J00ZckVB86hbLigvKdLdPmduw3-c9IxtYONnXZOjtpPsSUVnYsBwjJ68Qt991PIv89UbpABE1WmyDfVBR9j0KbdBjvIsGsJtHPr7Z_Ws4fuPXJQwfYb_SP6X9cXFe-Erg</recordid><startdate>20140301</startdate><enddate>20140301</enddate><creator>Mather, T. William</creator><creator>Hsieh, M. Ani</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20140301</creationdate><title>Synthesis and analysis of distributed ensemble control strategies for allocation to multiple tasks</title><author>Mather, T. William ; Hsieh, M. Ani</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-9efa24cb2a6e4ef41ad08306d4bb8f8804a35f1f93297caf226b60660286936d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Control theory</topic><topic>Controllers</topic><topic>Feedback</topic><topic>Policies</topic><topic>Robot control</topic><topic>Robots</topic><topic>Strategy</topic><topic>Tasks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mather, T. William</creatorcontrib><creatorcontrib>Hsieh, M. Ani</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Robotica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mather, T. William</au><au>Hsieh, M. Ani</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis and analysis of distributed ensemble control strategies for allocation to multiple tasks</atitle><jtitle>Robotica</jtitle><addtitle>Robotica</addtitle><date>2014-03-01</date><risdate>2014</risdate><volume>32</volume><issue>2</issue><spage>177</spage><epage>192</epage><pages>177-192</pages><issn>0263-5747</issn><eissn>1469-8668</eissn><abstract>We present the synthesis and analysis of distributed ensemble control policies to enable a team of robots to control their distribution across a collection of tasks. We assume that individual robot controllers are modeled as a sequential composition of individual task controllers. A macroscopic description of the team dynamics is then used to synthesize ensemble feedback control strategies that maintain the desired distribution of robots across the tasks. We present a distributed implementation of the ensemble feedback strategy that can be implemented with minimal communication requirements. Different from existing strategies, the approach results in individual robot control policies that maintain the desired mean and the variance of the robot populations at each task. We present the stability properties of the ensemble feedback strategy, verify the feasibility of the distributed ensemble controller through high-fidelity simulations, and examine the robustness of the strategy to sensing and/or actuation failures. Specifically, we consider the case when robots are subject to estimation and navigation errors resulting from lossy inter-agent wireless communication links and localization errors.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0263574713000994</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0263-5747 |
ispartof | Robotica, 2014-03, Vol.32 (2), p.177-192 |
issn | 0263-5747 1469-8668 |
language | eng |
recordid | cdi_proquest_miscellaneous_1530994014 |
source | Cambridge University Press Journals Complete |
subjects | Control theory Controllers Feedback Policies Robot control Robots Strategy Tasks |
title | Synthesis and analysis of distributed ensemble control strategies for allocation to multiple tasks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T07%3A36%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20and%20analysis%20of%20distributed%20ensemble%20control%20strategies%20for%20allocation%20to%20multiple%20tasks&rft.jtitle=Robotica&rft.au=Mather,%20T.%20William&rft.date=2014-03-01&rft.volume=32&rft.issue=2&rft.spage=177&rft.epage=192&rft.pages=177-192&rft.issn=0263-5747&rft.eissn=1469-8668&rft_id=info:doi/10.1017/S0263574713000994&rft_dat=%3Cproquest_cross%3E1530994014%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1513040495&rft_id=info:pmid/&rft_cupid=10_1017_S0263574713000994&rfr_iscdi=true |