Synthesis and analysis of distributed ensemble control strategies for allocation to multiple tasks

We present the synthesis and analysis of distributed ensemble control policies to enable a team of robots to control their distribution across a collection of tasks. We assume that individual robot controllers are modeled as a sequential composition of individual task controllers. A macroscopic desc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Robotica 2014-03, Vol.32 (2), p.177-192
Hauptverfasser: Mather, T. William, Hsieh, M. Ani
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 192
container_issue 2
container_start_page 177
container_title Robotica
container_volume 32
creator Mather, T. William
Hsieh, M. Ani
description We present the synthesis and analysis of distributed ensemble control policies to enable a team of robots to control their distribution across a collection of tasks. We assume that individual robot controllers are modeled as a sequential composition of individual task controllers. A macroscopic description of the team dynamics is then used to synthesize ensemble feedback control strategies that maintain the desired distribution of robots across the tasks. We present a distributed implementation of the ensemble feedback strategy that can be implemented with minimal communication requirements. Different from existing strategies, the approach results in individual robot control policies that maintain the desired mean and the variance of the robot populations at each task. We present the stability properties of the ensemble feedback strategy, verify the feasibility of the distributed ensemble controller through high-fidelity simulations, and examine the robustness of the strategy to sensing and/or actuation failures. Specifically, we consider the case when robots are subject to estimation and navigation errors resulting from lossy inter-agent wireless communication links and localization errors.
doi_str_mv 10.1017/S0263574713000994
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1530994014</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0263574713000994</cupid><sourcerecordid>1530994014</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-9efa24cb2a6e4ef41ad08306d4bb8f8804a35f1f93297caf226b60660286936d3</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYMouK5-AG8BL16qkyZNm6Ms_gPBw-q5JG2yRtNmTdLDfntT3IMoHoZheL_3YB5C5wSuCJD6eg0lp1XNakIBQAh2gBaEcVE0nDeHaDHLxawfo5MY3wEIJaxeILXejelNRxuxHPs80u3mwxvc25iCVVPSPdZj1INyGnd-TME7nCWZ9MbqiI0PWDrnO5msH3HyeJhcsttMJxk_4ik6MtJFfbbfS_R6d_uyeiienu8fVzdPRUcrSIXQRpasU6XkmmnDiOyhocB7plRjmgaYpJUhRtBS1J00ZckVB86hbLigvKdLdPmduw3-c9IxtYONnXZOjtpPsSUVnYsBwjJ68Qt991PIv89UbpABE1WmyDfVBR9j0KbdBjvIsGsJtHPr7Z_Ws4fuPXJQwfYb_SP6X9cXFe-Erg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1513040495</pqid></control><display><type>article</type><title>Synthesis and analysis of distributed ensemble control strategies for allocation to multiple tasks</title><source>Cambridge University Press Journals Complete</source><creator>Mather, T. William ; Hsieh, M. Ani</creator><creatorcontrib>Mather, T. William ; Hsieh, M. Ani</creatorcontrib><description>We present the synthesis and analysis of distributed ensemble control policies to enable a team of robots to control their distribution across a collection of tasks. We assume that individual robot controllers are modeled as a sequential composition of individual task controllers. A macroscopic description of the team dynamics is then used to synthesize ensemble feedback control strategies that maintain the desired distribution of robots across the tasks. We present a distributed implementation of the ensemble feedback strategy that can be implemented with minimal communication requirements. Different from existing strategies, the approach results in individual robot control policies that maintain the desired mean and the variance of the robot populations at each task. We present the stability properties of the ensemble feedback strategy, verify the feasibility of the distributed ensemble controller through high-fidelity simulations, and examine the robustness of the strategy to sensing and/or actuation failures. Specifically, we consider the case when robots are subject to estimation and navigation errors resulting from lossy inter-agent wireless communication links and localization errors.</description><identifier>ISSN: 0263-5747</identifier><identifier>EISSN: 1469-8668</identifier><identifier>DOI: 10.1017/S0263574713000994</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Control theory ; Controllers ; Feedback ; Policies ; Robot control ; Robots ; Strategy ; Tasks</subject><ispartof>Robotica, 2014-03, Vol.32 (2), p.177-192</ispartof><rights>Copyright © Cambridge University Press 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-9efa24cb2a6e4ef41ad08306d4bb8f8804a35f1f93297caf226b60660286936d3</citedby><cites>FETCH-LOGICAL-c350t-9efa24cb2a6e4ef41ad08306d4bb8f8804a35f1f93297caf226b60660286936d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0263574713000994/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids></links><search><creatorcontrib>Mather, T. William</creatorcontrib><creatorcontrib>Hsieh, M. Ani</creatorcontrib><title>Synthesis and analysis of distributed ensemble control strategies for allocation to multiple tasks</title><title>Robotica</title><addtitle>Robotica</addtitle><description>We present the synthesis and analysis of distributed ensemble control policies to enable a team of robots to control their distribution across a collection of tasks. We assume that individual robot controllers are modeled as a sequential composition of individual task controllers. A macroscopic description of the team dynamics is then used to synthesize ensemble feedback control strategies that maintain the desired distribution of robots across the tasks. We present a distributed implementation of the ensemble feedback strategy that can be implemented with minimal communication requirements. Different from existing strategies, the approach results in individual robot control policies that maintain the desired mean and the variance of the robot populations at each task. We present the stability properties of the ensemble feedback strategy, verify the feasibility of the distributed ensemble controller through high-fidelity simulations, and examine the robustness of the strategy to sensing and/or actuation failures. Specifically, we consider the case when robots are subject to estimation and navigation errors resulting from lossy inter-agent wireless communication links and localization errors.</description><subject>Control theory</subject><subject>Controllers</subject><subject>Feedback</subject><subject>Policies</subject><subject>Robot control</subject><subject>Robots</subject><subject>Strategy</subject><subject>Tasks</subject><issn>0263-5747</issn><issn>1469-8668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kE9LxDAQxYMouK5-AG8BL16qkyZNm6Ms_gPBw-q5JG2yRtNmTdLDfntT3IMoHoZheL_3YB5C5wSuCJD6eg0lp1XNakIBQAh2gBaEcVE0nDeHaDHLxawfo5MY3wEIJaxeILXejelNRxuxHPs80u3mwxvc25iCVVPSPdZj1INyGnd-TME7nCWZ9MbqiI0PWDrnO5msH3HyeJhcsttMJxk_4ik6MtJFfbbfS_R6d_uyeiienu8fVzdPRUcrSIXQRpasU6XkmmnDiOyhocB7plRjmgaYpJUhRtBS1J00ZckVB86hbLigvKdLdPmduw3-c9IxtYONnXZOjtpPsSUVnYsBwjJ68Qt991PIv89UbpABE1WmyDfVBR9j0KbdBjvIsGsJtHPr7Z_Ws4fuPXJQwfYb_SP6X9cXFe-Erg</recordid><startdate>20140301</startdate><enddate>20140301</enddate><creator>Mather, T. William</creator><creator>Hsieh, M. Ani</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20140301</creationdate><title>Synthesis and analysis of distributed ensemble control strategies for allocation to multiple tasks</title><author>Mather, T. William ; Hsieh, M. Ani</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-9efa24cb2a6e4ef41ad08306d4bb8f8804a35f1f93297caf226b60660286936d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Control theory</topic><topic>Controllers</topic><topic>Feedback</topic><topic>Policies</topic><topic>Robot control</topic><topic>Robots</topic><topic>Strategy</topic><topic>Tasks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mather, T. William</creatorcontrib><creatorcontrib>Hsieh, M. Ani</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Robotica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mather, T. William</au><au>Hsieh, M. Ani</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis and analysis of distributed ensemble control strategies for allocation to multiple tasks</atitle><jtitle>Robotica</jtitle><addtitle>Robotica</addtitle><date>2014-03-01</date><risdate>2014</risdate><volume>32</volume><issue>2</issue><spage>177</spage><epage>192</epage><pages>177-192</pages><issn>0263-5747</issn><eissn>1469-8668</eissn><abstract>We present the synthesis and analysis of distributed ensemble control policies to enable a team of robots to control their distribution across a collection of tasks. We assume that individual robot controllers are modeled as a sequential composition of individual task controllers. A macroscopic description of the team dynamics is then used to synthesize ensemble feedback control strategies that maintain the desired distribution of robots across the tasks. We present a distributed implementation of the ensemble feedback strategy that can be implemented with minimal communication requirements. Different from existing strategies, the approach results in individual robot control policies that maintain the desired mean and the variance of the robot populations at each task. We present the stability properties of the ensemble feedback strategy, verify the feasibility of the distributed ensemble controller through high-fidelity simulations, and examine the robustness of the strategy to sensing and/or actuation failures. Specifically, we consider the case when robots are subject to estimation and navigation errors resulting from lossy inter-agent wireless communication links and localization errors.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0263574713000994</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0263-5747
ispartof Robotica, 2014-03, Vol.32 (2), p.177-192
issn 0263-5747
1469-8668
language eng
recordid cdi_proquest_miscellaneous_1530994014
source Cambridge University Press Journals Complete
subjects Control theory
Controllers
Feedback
Policies
Robot control
Robots
Strategy
Tasks
title Synthesis and analysis of distributed ensemble control strategies for allocation to multiple tasks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T07%3A36%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20and%20analysis%20of%20distributed%20ensemble%20control%20strategies%20for%20allocation%20to%20multiple%20tasks&rft.jtitle=Robotica&rft.au=Mather,%20T.%20William&rft.date=2014-03-01&rft.volume=32&rft.issue=2&rft.spage=177&rft.epage=192&rft.pages=177-192&rft.issn=0263-5747&rft.eissn=1469-8668&rft_id=info:doi/10.1017/S0263574713000994&rft_dat=%3Cproquest_cross%3E1530994014%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1513040495&rft_id=info:pmid/&rft_cupid=10_1017_S0263574713000994&rfr_iscdi=true