Deployment Dynamics of Ultrathin Composite Booms with Tape-Spring Hinges
An experimental and numerical study of the dynamic deployment of stored strain energy deployable booms with tape-spring hinges made of woven carbon fiber composite is presented. The deployment consists of three phases: deployment, one or more attempts to latch, and a small amplitude vibration. Twelv...
Gespeichert in:
Veröffentlicht in: | Journal of spacecraft and rockets 2014-03, Vol.51 (2), p.604-613 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 613 |
---|---|
container_issue | 2 |
container_start_page | 604 |
container_title | Journal of spacecraft and rockets |
container_volume | 51 |
creator | Mallikarachchi, H. M. Y. C Pellegrino, S |
description | An experimental and numerical study of the dynamic deployment of stored strain energy deployable booms with tape-spring hinges made of woven carbon fiber composite is presented. The deployment consists of three phases: deployment, one or more attempts to latch, and a small amplitude vibration. Twelve nominally identical deployment experiments show that the deployment and vibration phases are repeatable, whereas considerable scatter is observed during latching. A high-fidelity finite element shell model of the complete boom is used to carry out complete dynamic simulations with the Abaqus/Explicit finite element software. These analyses provide detailed time histories of deformation and stress distribution. By varying the end conditions at the root of the boom and the viscous pressure loading on the surface of the hinge region, the analyses provide 1) an envelope of responses that bound the complete set of experimental observations and 2) responses that closely approximate actual experiments. The presented approach is fully general and can provide high-fidelity simulations for any kind of stored-energy deployable structure. |
doi_str_mv | 10.2514/1.A32401 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1530991500</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2167832042</sourcerecordid><originalsourceid>FETCH-LOGICAL-a346t-197f27db0e7a31204bbb9e5175e9a2f106fd49c27f6188a17a2bfe421c73d8e73</originalsourceid><addsrcrecordid>eNp9kE9Lw0AUxBdRsFbBj7AggpfUffs3e6ytWqHgwfa8bNJdm5JkYzZB-u2NVFB68PLm8mPmzSB0DWRCBfB7mEwZ5QRO0AgEY4lUmp-iESGUJlwKco4uYtwRAjKVeoQWc9eUYV-5usPzfW2rIo84eLwuu9Z226LGs1A1IRadww8hVBF_Ft0Wr2zjkremLep3vBiOi5fozNsyuqsfHaP10-NqtkiWr88vs-kysYzLLgGtPFWbjDhlGVDCsyzTToASTlvqgUi_4TqnyktIUwvK0sw7TiFXbJM6xcbo7uDbtOGjd7EzVRFzV5a2dqGPZihNtAZByIDeHKG70Lf18J2hIFXKhnj6HwUCKAehCf2NzdsQY-u8GcpXtt0bIOZ7eAPmMPyA3h5QW1j7x-yY-wIogH3X</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1512415902</pqid></control><display><type>article</type><title>Deployment Dynamics of Ultrathin Composite Booms with Tape-Spring Hinges</title><source>Alma/SFX Local Collection</source><creator>Mallikarachchi, H. M. Y. C ; Pellegrino, S</creator><creatorcontrib>Mallikarachchi, H. M. Y. C ; Pellegrino, S</creatorcontrib><description>An experimental and numerical study of the dynamic deployment of stored strain energy deployable booms with tape-spring hinges made of woven carbon fiber composite is presented. The deployment consists of three phases: deployment, one or more attempts to latch, and a small amplitude vibration. Twelve nominally identical deployment experiments show that the deployment and vibration phases are repeatable, whereas considerable scatter is observed during latching. A high-fidelity finite element shell model of the complete boom is used to carry out complete dynamic simulations with the Abaqus/Explicit finite element software. These analyses provide detailed time histories of deformation and stress distribution. By varying the end conditions at the root of the boom and the viscous pressure loading on the surface of the hinge region, the analyses provide 1) an envelope of responses that bound the complete set of experimental observations and 2) responses that closely approximate actual experiments. The presented approach is fully general and can provide high-fidelity simulations for any kind of stored-energy deployable structure.</description><identifier>ISSN: 0022-4650</identifier><identifier>EISSN: 1533-6794</identifier><identifier>DOI: 10.2514/1.A32401</identifier><language>eng</language><publisher>Reston: American Institute of Aeronautics and Astronautics</publisher><subject>Booms ; Carbon fiber reinforced plastics ; Carbon fibers ; Computer simulation ; Deformation ; Deployable structures ; Dynamics ; Economic conditions ; Fiber composites ; Finite element method ; Hinges ; Mathematical analysis ; Mathematical models ; Spacecraft ; Stress concentration ; Stress distribution ; Vibration</subject><ispartof>Journal of spacecraft and rockets, 2014-03, Vol.51 (2), p.604-613</ispartof><rights>Copyright © 2012 by H.M.Y.C. Mallikarachchi and S. Pellegrino. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. Copies of this paper may be made for personal or internal use, on condition that the copier pay the $10.00 per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923; include the code and $10.00 in correspondence with the CCC.</rights><rights>Copyright © 2012 by H.M.Y.C. Mallikarachchi and S. Pellegrino. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. Copies of this paper may be made for personal or internal use, on condition that the copier pay the $10.00 per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923; include the code 1533-6794/14 and $10.00 in correspondence with the CCC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a346t-197f27db0e7a31204bbb9e5175e9a2f106fd49c27f6188a17a2bfe421c73d8e73</citedby><cites>FETCH-LOGICAL-a346t-197f27db0e7a31204bbb9e5175e9a2f106fd49c27f6188a17a2bfe421c73d8e73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Mallikarachchi, H. M. Y. C</creatorcontrib><creatorcontrib>Pellegrino, S</creatorcontrib><title>Deployment Dynamics of Ultrathin Composite Booms with Tape-Spring Hinges</title><title>Journal of spacecraft and rockets</title><description>An experimental and numerical study of the dynamic deployment of stored strain energy deployable booms with tape-spring hinges made of woven carbon fiber composite is presented. The deployment consists of three phases: deployment, one or more attempts to latch, and a small amplitude vibration. Twelve nominally identical deployment experiments show that the deployment and vibration phases are repeatable, whereas considerable scatter is observed during latching. A high-fidelity finite element shell model of the complete boom is used to carry out complete dynamic simulations with the Abaqus/Explicit finite element software. These analyses provide detailed time histories of deformation and stress distribution. By varying the end conditions at the root of the boom and the viscous pressure loading on the surface of the hinge region, the analyses provide 1) an envelope of responses that bound the complete set of experimental observations and 2) responses that closely approximate actual experiments. The presented approach is fully general and can provide high-fidelity simulations for any kind of stored-energy deployable structure.</description><subject>Booms</subject><subject>Carbon fiber reinforced plastics</subject><subject>Carbon fibers</subject><subject>Computer simulation</subject><subject>Deformation</subject><subject>Deployable structures</subject><subject>Dynamics</subject><subject>Economic conditions</subject><subject>Fiber composites</subject><subject>Finite element method</subject><subject>Hinges</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Spacecraft</subject><subject>Stress concentration</subject><subject>Stress distribution</subject><subject>Vibration</subject><issn>0022-4650</issn><issn>1533-6794</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kE9Lw0AUxBdRsFbBj7AggpfUffs3e6ytWqHgwfa8bNJdm5JkYzZB-u2NVFB68PLm8mPmzSB0DWRCBfB7mEwZ5QRO0AgEY4lUmp-iESGUJlwKco4uYtwRAjKVeoQWc9eUYV-5usPzfW2rIo84eLwuu9Z226LGs1A1IRadww8hVBF_Ft0Wr2zjkremLep3vBiOi5fozNsyuqsfHaP10-NqtkiWr88vs-kysYzLLgGtPFWbjDhlGVDCsyzTToASTlvqgUi_4TqnyktIUwvK0sw7TiFXbJM6xcbo7uDbtOGjd7EzVRFzV5a2dqGPZihNtAZByIDeHKG70Lf18J2hIFXKhnj6HwUCKAehCf2NzdsQY-u8GcpXtt0bIOZ7eAPmMPyA3h5QW1j7x-yY-wIogH3X</recordid><startdate>20140301</startdate><enddate>20140301</enddate><creator>Mallikarachchi, H. M. Y. C</creator><creator>Pellegrino, S</creator><general>American Institute of Aeronautics and Astronautics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>7SR</scope><scope>JG9</scope></search><sort><creationdate>20140301</creationdate><title>Deployment Dynamics of Ultrathin Composite Booms with Tape-Spring Hinges</title><author>Mallikarachchi, H. M. Y. C ; Pellegrino, S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a346t-197f27db0e7a31204bbb9e5175e9a2f106fd49c27f6188a17a2bfe421c73d8e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Booms</topic><topic>Carbon fiber reinforced plastics</topic><topic>Carbon fibers</topic><topic>Computer simulation</topic><topic>Deformation</topic><topic>Deployable structures</topic><topic>Dynamics</topic><topic>Economic conditions</topic><topic>Fiber composites</topic><topic>Finite element method</topic><topic>Hinges</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Spacecraft</topic><topic>Stress concentration</topic><topic>Stress distribution</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mallikarachchi, H. M. Y. C</creatorcontrib><creatorcontrib>Pellegrino, S</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Research Database</collection><jtitle>Journal of spacecraft and rockets</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mallikarachchi, H. M. Y. C</au><au>Pellegrino, S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deployment Dynamics of Ultrathin Composite Booms with Tape-Spring Hinges</atitle><jtitle>Journal of spacecraft and rockets</jtitle><date>2014-03-01</date><risdate>2014</risdate><volume>51</volume><issue>2</issue><spage>604</spage><epage>613</epage><pages>604-613</pages><issn>0022-4650</issn><eissn>1533-6794</eissn><abstract>An experimental and numerical study of the dynamic deployment of stored strain energy deployable booms with tape-spring hinges made of woven carbon fiber composite is presented. The deployment consists of three phases: deployment, one or more attempts to latch, and a small amplitude vibration. Twelve nominally identical deployment experiments show that the deployment and vibration phases are repeatable, whereas considerable scatter is observed during latching. A high-fidelity finite element shell model of the complete boom is used to carry out complete dynamic simulations with the Abaqus/Explicit finite element software. These analyses provide detailed time histories of deformation and stress distribution. By varying the end conditions at the root of the boom and the viscous pressure loading on the surface of the hinge region, the analyses provide 1) an envelope of responses that bound the complete set of experimental observations and 2) responses that closely approximate actual experiments. The presented approach is fully general and can provide high-fidelity simulations for any kind of stored-energy deployable structure.</abstract><cop>Reston</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.A32401</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-4650 |
ispartof | Journal of spacecraft and rockets, 2014-03, Vol.51 (2), p.604-613 |
issn | 0022-4650 1533-6794 |
language | eng |
recordid | cdi_proquest_miscellaneous_1530991500 |
source | Alma/SFX Local Collection |
subjects | Booms Carbon fiber reinforced plastics Carbon fibers Computer simulation Deformation Deployable structures Dynamics Economic conditions Fiber composites Finite element method Hinges Mathematical analysis Mathematical models Spacecraft Stress concentration Stress distribution Vibration |
title | Deployment Dynamics of Ultrathin Composite Booms with Tape-Spring Hinges |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T14%3A34%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deployment%20Dynamics%20of%20Ultrathin%20Composite%20Booms%20with%20Tape-Spring%20Hinges&rft.jtitle=Journal%20of%20spacecraft%20and%20rockets&rft.au=Mallikarachchi,%20H.%20M.%20Y.%20C&rft.date=2014-03-01&rft.volume=51&rft.issue=2&rft.spage=604&rft.epage=613&rft.pages=604-613&rft.issn=0022-4650&rft.eissn=1533-6794&rft_id=info:doi/10.2514/1.A32401&rft_dat=%3Cproquest_cross%3E2167832042%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1512415902&rft_id=info:pmid/&rfr_iscdi=true |