Deployment Dynamics of Ultrathin Composite Booms with Tape-Spring Hinges

An experimental and numerical study of the dynamic deployment of stored strain energy deployable booms with tape-spring hinges made of woven carbon fiber composite is presented. The deployment consists of three phases: deployment, one or more attempts to latch, and a small amplitude vibration. Twelv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of spacecraft and rockets 2014-03, Vol.51 (2), p.604-613
Hauptverfasser: Mallikarachchi, H. M. Y. C, Pellegrino, S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 613
container_issue 2
container_start_page 604
container_title Journal of spacecraft and rockets
container_volume 51
creator Mallikarachchi, H. M. Y. C
Pellegrino, S
description An experimental and numerical study of the dynamic deployment of stored strain energy deployable booms with tape-spring hinges made of woven carbon fiber composite is presented. The deployment consists of three phases: deployment, one or more attempts to latch, and a small amplitude vibration. Twelve nominally identical deployment experiments show that the deployment and vibration phases are repeatable, whereas considerable scatter is observed during latching. A high-fidelity finite element shell model of the complete boom is used to carry out complete dynamic simulations with the Abaqus/Explicit finite element software. These analyses provide detailed time histories of deformation and stress distribution. By varying the end conditions at the root of the boom and the viscous pressure loading on the surface of the hinge region, the analyses provide 1) an envelope of responses that bound the complete set of experimental observations and 2) responses that closely approximate actual experiments. The presented approach is fully general and can provide high-fidelity simulations for any kind of stored-energy deployable structure.
doi_str_mv 10.2514/1.A32401
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1530991500</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2167832042</sourcerecordid><originalsourceid>FETCH-LOGICAL-a346t-197f27db0e7a31204bbb9e5175e9a2f106fd49c27f6188a17a2bfe421c73d8e73</originalsourceid><addsrcrecordid>eNp9kE9Lw0AUxBdRsFbBj7AggpfUffs3e6ytWqHgwfa8bNJdm5JkYzZB-u2NVFB68PLm8mPmzSB0DWRCBfB7mEwZ5QRO0AgEY4lUmp-iESGUJlwKco4uYtwRAjKVeoQWc9eUYV-5usPzfW2rIo84eLwuu9Z226LGs1A1IRadww8hVBF_Ft0Wr2zjkremLep3vBiOi5fozNsyuqsfHaP10-NqtkiWr88vs-kysYzLLgGtPFWbjDhlGVDCsyzTToASTlvqgUi_4TqnyktIUwvK0sw7TiFXbJM6xcbo7uDbtOGjd7EzVRFzV5a2dqGPZihNtAZByIDeHKG70Lf18J2hIFXKhnj6HwUCKAehCf2NzdsQY-u8GcpXtt0bIOZ7eAPmMPyA3h5QW1j7x-yY-wIogH3X</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1512415902</pqid></control><display><type>article</type><title>Deployment Dynamics of Ultrathin Composite Booms with Tape-Spring Hinges</title><source>Alma/SFX Local Collection</source><creator>Mallikarachchi, H. M. Y. C ; Pellegrino, S</creator><creatorcontrib>Mallikarachchi, H. M. Y. C ; Pellegrino, S</creatorcontrib><description>An experimental and numerical study of the dynamic deployment of stored strain energy deployable booms with tape-spring hinges made of woven carbon fiber composite is presented. The deployment consists of three phases: deployment, one or more attempts to latch, and a small amplitude vibration. Twelve nominally identical deployment experiments show that the deployment and vibration phases are repeatable, whereas considerable scatter is observed during latching. A high-fidelity finite element shell model of the complete boom is used to carry out complete dynamic simulations with the Abaqus/Explicit finite element software. These analyses provide detailed time histories of deformation and stress distribution. By varying the end conditions at the root of the boom and the viscous pressure loading on the surface of the hinge region, the analyses provide 1) an envelope of responses that bound the complete set of experimental observations and 2) responses that closely approximate actual experiments. The presented approach is fully general and can provide high-fidelity simulations for any kind of stored-energy deployable structure.</description><identifier>ISSN: 0022-4650</identifier><identifier>EISSN: 1533-6794</identifier><identifier>DOI: 10.2514/1.A32401</identifier><language>eng</language><publisher>Reston: American Institute of Aeronautics and Astronautics</publisher><subject>Booms ; Carbon fiber reinforced plastics ; Carbon fibers ; Computer simulation ; Deformation ; Deployable structures ; Dynamics ; Economic conditions ; Fiber composites ; Finite element method ; Hinges ; Mathematical analysis ; Mathematical models ; Spacecraft ; Stress concentration ; Stress distribution ; Vibration</subject><ispartof>Journal of spacecraft and rockets, 2014-03, Vol.51 (2), p.604-613</ispartof><rights>Copyright © 2012 by H.M.Y.C. Mallikarachchi and S. Pellegrino. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. Copies of this paper may be made for personal or internal use, on condition that the copier pay the $10.00 per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923; include the code and $10.00 in correspondence with the CCC.</rights><rights>Copyright © 2012 by H.M.Y.C. Mallikarachchi and S. Pellegrino. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. Copies of this paper may be made for personal or internal use, on condition that the copier pay the $10.00 per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923; include the code 1533-6794/14 and $10.00 in correspondence with the CCC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a346t-197f27db0e7a31204bbb9e5175e9a2f106fd49c27f6188a17a2bfe421c73d8e73</citedby><cites>FETCH-LOGICAL-a346t-197f27db0e7a31204bbb9e5175e9a2f106fd49c27f6188a17a2bfe421c73d8e73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Mallikarachchi, H. M. Y. C</creatorcontrib><creatorcontrib>Pellegrino, S</creatorcontrib><title>Deployment Dynamics of Ultrathin Composite Booms with Tape-Spring Hinges</title><title>Journal of spacecraft and rockets</title><description>An experimental and numerical study of the dynamic deployment of stored strain energy deployable booms with tape-spring hinges made of woven carbon fiber composite is presented. The deployment consists of three phases: deployment, one or more attempts to latch, and a small amplitude vibration. Twelve nominally identical deployment experiments show that the deployment and vibration phases are repeatable, whereas considerable scatter is observed during latching. A high-fidelity finite element shell model of the complete boom is used to carry out complete dynamic simulations with the Abaqus/Explicit finite element software. These analyses provide detailed time histories of deformation and stress distribution. By varying the end conditions at the root of the boom and the viscous pressure loading on the surface of the hinge region, the analyses provide 1) an envelope of responses that bound the complete set of experimental observations and 2) responses that closely approximate actual experiments. The presented approach is fully general and can provide high-fidelity simulations for any kind of stored-energy deployable structure.</description><subject>Booms</subject><subject>Carbon fiber reinforced plastics</subject><subject>Carbon fibers</subject><subject>Computer simulation</subject><subject>Deformation</subject><subject>Deployable structures</subject><subject>Dynamics</subject><subject>Economic conditions</subject><subject>Fiber composites</subject><subject>Finite element method</subject><subject>Hinges</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Spacecraft</subject><subject>Stress concentration</subject><subject>Stress distribution</subject><subject>Vibration</subject><issn>0022-4650</issn><issn>1533-6794</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kE9Lw0AUxBdRsFbBj7AggpfUffs3e6ytWqHgwfa8bNJdm5JkYzZB-u2NVFB68PLm8mPmzSB0DWRCBfB7mEwZ5QRO0AgEY4lUmp-iESGUJlwKco4uYtwRAjKVeoQWc9eUYV-5usPzfW2rIo84eLwuu9Z226LGs1A1IRadww8hVBF_Ft0Wr2zjkremLep3vBiOi5fozNsyuqsfHaP10-NqtkiWr88vs-kysYzLLgGtPFWbjDhlGVDCsyzTToASTlvqgUi_4TqnyktIUwvK0sw7TiFXbJM6xcbo7uDbtOGjd7EzVRFzV5a2dqGPZihNtAZByIDeHKG70Lf18J2hIFXKhnj6HwUCKAehCf2NzdsQY-u8GcpXtt0bIOZ7eAPmMPyA3h5QW1j7x-yY-wIogH3X</recordid><startdate>20140301</startdate><enddate>20140301</enddate><creator>Mallikarachchi, H. M. Y. C</creator><creator>Pellegrino, S</creator><general>American Institute of Aeronautics and Astronautics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>7SR</scope><scope>JG9</scope></search><sort><creationdate>20140301</creationdate><title>Deployment Dynamics of Ultrathin Composite Booms with Tape-Spring Hinges</title><author>Mallikarachchi, H. M. Y. C ; Pellegrino, S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a346t-197f27db0e7a31204bbb9e5175e9a2f106fd49c27f6188a17a2bfe421c73d8e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Booms</topic><topic>Carbon fiber reinforced plastics</topic><topic>Carbon fibers</topic><topic>Computer simulation</topic><topic>Deformation</topic><topic>Deployable structures</topic><topic>Dynamics</topic><topic>Economic conditions</topic><topic>Fiber composites</topic><topic>Finite element method</topic><topic>Hinges</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Spacecraft</topic><topic>Stress concentration</topic><topic>Stress distribution</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mallikarachchi, H. M. Y. C</creatorcontrib><creatorcontrib>Pellegrino, S</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Research Database</collection><jtitle>Journal of spacecraft and rockets</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mallikarachchi, H. M. Y. C</au><au>Pellegrino, S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deployment Dynamics of Ultrathin Composite Booms with Tape-Spring Hinges</atitle><jtitle>Journal of spacecraft and rockets</jtitle><date>2014-03-01</date><risdate>2014</risdate><volume>51</volume><issue>2</issue><spage>604</spage><epage>613</epage><pages>604-613</pages><issn>0022-4650</issn><eissn>1533-6794</eissn><abstract>An experimental and numerical study of the dynamic deployment of stored strain energy deployable booms with tape-spring hinges made of woven carbon fiber composite is presented. The deployment consists of three phases: deployment, one or more attempts to latch, and a small amplitude vibration. Twelve nominally identical deployment experiments show that the deployment and vibration phases are repeatable, whereas considerable scatter is observed during latching. A high-fidelity finite element shell model of the complete boom is used to carry out complete dynamic simulations with the Abaqus/Explicit finite element software. These analyses provide detailed time histories of deformation and stress distribution. By varying the end conditions at the root of the boom and the viscous pressure loading on the surface of the hinge region, the analyses provide 1) an envelope of responses that bound the complete set of experimental observations and 2) responses that closely approximate actual experiments. The presented approach is fully general and can provide high-fidelity simulations for any kind of stored-energy deployable structure.</abstract><cop>Reston</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.A32401</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-4650
ispartof Journal of spacecraft and rockets, 2014-03, Vol.51 (2), p.604-613
issn 0022-4650
1533-6794
language eng
recordid cdi_proquest_miscellaneous_1530991500
source Alma/SFX Local Collection
subjects Booms
Carbon fiber reinforced plastics
Carbon fibers
Computer simulation
Deformation
Deployable structures
Dynamics
Economic conditions
Fiber composites
Finite element method
Hinges
Mathematical analysis
Mathematical models
Spacecraft
Stress concentration
Stress distribution
Vibration
title Deployment Dynamics of Ultrathin Composite Booms with Tape-Spring Hinges
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T14%3A34%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deployment%20Dynamics%20of%20Ultrathin%20Composite%20Booms%20with%20Tape-Spring%20Hinges&rft.jtitle=Journal%20of%20spacecraft%20and%20rockets&rft.au=Mallikarachchi,%20H.%20M.%20Y.%20C&rft.date=2014-03-01&rft.volume=51&rft.issue=2&rft.spage=604&rft.epage=613&rft.pages=604-613&rft.issn=0022-4650&rft.eissn=1533-6794&rft_id=info:doi/10.2514/1.A32401&rft_dat=%3Cproquest_cross%3E2167832042%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1512415902&rft_id=info:pmid/&rfr_iscdi=true