Distributed Particle Swarm Optimization for limited-time adaptation with real robots

Evaluative techniques offer a tremendous potential for online controller design. However, when the optimization space is large and the performance metric is noisy, the overall adaptation process becomes extremely time consuming. Distributing the adaptation process reduces the required time and incre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Robotica 2014-03, Vol.32 (2), p.193-208
Hauptverfasser: Di Mario, Ezequiel, Martinoli, Alcherio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 208
container_issue 2
container_start_page 193
container_title Robotica
container_volume 32
creator Di Mario, Ezequiel
Martinoli, Alcherio
description Evaluative techniques offer a tremendous potential for online controller design. However, when the optimization space is large and the performance metric is noisy, the overall adaptation process becomes extremely time consuming. Distributing the adaptation process reduces the required time and increases robustness to failure of individual agents. In this paper, we analyze the role of the four algorithmic parameters that determine the total evaluation time in a distributed implementation of a Particle Swarm Optimization (PSO) algorithm. For an obstacle avoidance case study using up to eight robots, we explore in simulation the lower boundaries of these parameters and propose a set of empirical guidelines for choosing their values. We then apply these guidelines to a real robot implementation and show that it is feasible to optimize 24 control parameters per robot within 2 h, a limited amount of time determined by the robots' battery life. We also show that a hybrid simulate-and-transfer approach coupled with a noise-resistant PSO algorithm can be used to further reduce experimental time as compared to a pure real-robot implementation.
doi_str_mv 10.1017/S026357471300101X
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1530990725</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S026357471300101X</cupid><sourcerecordid>3267550761</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-480710b00bc693b4b2fe3aa3237d01596d20d15a521b3b623f4a565fd80dc1e53</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYMoOI7-AHcBN26qN82j7VLGJwyMMCO4K0mbaoZ2UpOUQX-9KTMLUVxd7j3fOVwOQucErgiQ7HoJqaA8YxmhAPHyeoAmhIkiyYXID9FklJNRP0Yn3q8jQwnLJmh1a3xwRg1B1_hZumCqVuPlVroOL_pgOvMlg7Eb3FiH27hGLolnjWUt-7DTtia8Y6dli51VNvhTdNTI1uuz_Zyil_u71ewxmS8enmY386SiBQ0JyyEjoABUJQqqmEobTaWkKc1qILwQdQo14ZKnRFElUtowyQVv6hzqimhOp-hyl9s7-zFoH8rO-Eq3rdxoO_iScApFAVk6ohe_0LUd3CZ-F6nYGQPOikiRHVU5673TTdk700n3WRIox57LPz1HD917ZKecqd_0j-h_Xd-dS37Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1513040549</pqid></control><display><type>article</type><title>Distributed Particle Swarm Optimization for limited-time adaptation with real robots</title><source>Cambridge University Press Journals Complete</source><creator>Di Mario, Ezequiel ; Martinoli, Alcherio</creator><creatorcontrib>Di Mario, Ezequiel ; Martinoli, Alcherio</creatorcontrib><description>Evaluative techniques offer a tremendous potential for online controller design. However, when the optimization space is large and the performance metric is noisy, the overall adaptation process becomes extremely time consuming. Distributing the adaptation process reduces the required time and increases robustness to failure of individual agents. In this paper, we analyze the role of the four algorithmic parameters that determine the total evaluation time in a distributed implementation of a Particle Swarm Optimization (PSO) algorithm. For an obstacle avoidance case study using up to eight robots, we explore in simulation the lower boundaries of these parameters and propose a set of empirical guidelines for choosing their values. We then apply these guidelines to a real robot implementation and show that it is feasible to optimize 24 control parameters per robot within 2 h, a limited amount of time determined by the robots' battery life. We also show that a hybrid simulate-and-transfer approach coupled with a noise-resistant PSO algorithm can be used to further reduce experimental time as compared to a pure real-robot implementation.</description><identifier>ISSN: 0263-5747</identifier><identifier>EISSN: 1469-8668</identifier><identifier>DOI: 10.1017/S026357471300101X</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Adaptation ; Algorithms ; Boundaries ; Computer simulation ; Guidelines ; Robot control ; Robots ; Swarm intelligence</subject><ispartof>Robotica, 2014-03, Vol.32 (2), p.193-208</ispartof><rights>Copyright © Cambridge University Press 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-480710b00bc693b4b2fe3aa3237d01596d20d15a521b3b623f4a565fd80dc1e53</citedby><cites>FETCH-LOGICAL-c393t-480710b00bc693b4b2fe3aa3237d01596d20d15a521b3b623f4a565fd80dc1e53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S026357471300101X/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids></links><search><creatorcontrib>Di Mario, Ezequiel</creatorcontrib><creatorcontrib>Martinoli, Alcherio</creatorcontrib><title>Distributed Particle Swarm Optimization for limited-time adaptation with real robots</title><title>Robotica</title><addtitle>Robotica</addtitle><description>Evaluative techniques offer a tremendous potential for online controller design. However, when the optimization space is large and the performance metric is noisy, the overall adaptation process becomes extremely time consuming. Distributing the adaptation process reduces the required time and increases robustness to failure of individual agents. In this paper, we analyze the role of the four algorithmic parameters that determine the total evaluation time in a distributed implementation of a Particle Swarm Optimization (PSO) algorithm. For an obstacle avoidance case study using up to eight robots, we explore in simulation the lower boundaries of these parameters and propose a set of empirical guidelines for choosing their values. We then apply these guidelines to a real robot implementation and show that it is feasible to optimize 24 control parameters per robot within 2 h, a limited amount of time determined by the robots' battery life. We also show that a hybrid simulate-and-transfer approach coupled with a noise-resistant PSO algorithm can be used to further reduce experimental time as compared to a pure real-robot implementation.</description><subject>Adaptation</subject><subject>Algorithms</subject><subject>Boundaries</subject><subject>Computer simulation</subject><subject>Guidelines</subject><subject>Robot control</subject><subject>Robots</subject><subject>Swarm intelligence</subject><issn>0263-5747</issn><issn>1469-8668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEtLxDAUhYMoOI7-AHcBN26qN82j7VLGJwyMMCO4K0mbaoZ2UpOUQX-9KTMLUVxd7j3fOVwOQucErgiQ7HoJqaA8YxmhAPHyeoAmhIkiyYXID9FklJNRP0Yn3q8jQwnLJmh1a3xwRg1B1_hZumCqVuPlVroOL_pgOvMlg7Eb3FiH27hGLolnjWUt-7DTtia8Y6dli51VNvhTdNTI1uuz_Zyil_u71ewxmS8enmY386SiBQ0JyyEjoABUJQqqmEobTaWkKc1qILwQdQo14ZKnRFElUtowyQVv6hzqimhOp-hyl9s7-zFoH8rO-Eq3rdxoO_iScApFAVk6ohe_0LUd3CZ-F6nYGQPOikiRHVU5673TTdk700n3WRIox57LPz1HD917ZKecqd_0j-h_Xd-dS37Y</recordid><startdate>20140301</startdate><enddate>20140301</enddate><creator>Di Mario, Ezequiel</creator><creator>Martinoli, Alcherio</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20140301</creationdate><title>Distributed Particle Swarm Optimization for limited-time adaptation with real robots</title><author>Di Mario, Ezequiel ; Martinoli, Alcherio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-480710b00bc693b4b2fe3aa3237d01596d20d15a521b3b623f4a565fd80dc1e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adaptation</topic><topic>Algorithms</topic><topic>Boundaries</topic><topic>Computer simulation</topic><topic>Guidelines</topic><topic>Robot control</topic><topic>Robots</topic><topic>Swarm intelligence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Di Mario, Ezequiel</creatorcontrib><creatorcontrib>Martinoli, Alcherio</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Robotica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Di Mario, Ezequiel</au><au>Martinoli, Alcherio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distributed Particle Swarm Optimization for limited-time adaptation with real robots</atitle><jtitle>Robotica</jtitle><addtitle>Robotica</addtitle><date>2014-03-01</date><risdate>2014</risdate><volume>32</volume><issue>2</issue><spage>193</spage><epage>208</epage><pages>193-208</pages><issn>0263-5747</issn><eissn>1469-8668</eissn><abstract>Evaluative techniques offer a tremendous potential for online controller design. However, when the optimization space is large and the performance metric is noisy, the overall adaptation process becomes extremely time consuming. Distributing the adaptation process reduces the required time and increases robustness to failure of individual agents. In this paper, we analyze the role of the four algorithmic parameters that determine the total evaluation time in a distributed implementation of a Particle Swarm Optimization (PSO) algorithm. For an obstacle avoidance case study using up to eight robots, we explore in simulation the lower boundaries of these parameters and propose a set of empirical guidelines for choosing their values. We then apply these guidelines to a real robot implementation and show that it is feasible to optimize 24 control parameters per robot within 2 h, a limited amount of time determined by the robots' battery life. We also show that a hybrid simulate-and-transfer approach coupled with a noise-resistant PSO algorithm can be used to further reduce experimental time as compared to a pure real-robot implementation.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S026357471300101X</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0263-5747
ispartof Robotica, 2014-03, Vol.32 (2), p.193-208
issn 0263-5747
1469-8668
language eng
recordid cdi_proquest_miscellaneous_1530990725
source Cambridge University Press Journals Complete
subjects Adaptation
Algorithms
Boundaries
Computer simulation
Guidelines
Robot control
Robots
Swarm intelligence
title Distributed Particle Swarm Optimization for limited-time adaptation with real robots
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T00%3A09%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distributed%20Particle%20Swarm%20Optimization%20for%20limited-time%20adaptation%20with%20real%20robots&rft.jtitle=Robotica&rft.au=Di%20Mario,%20Ezequiel&rft.date=2014-03-01&rft.volume=32&rft.issue=2&rft.spage=193&rft.epage=208&rft.pages=193-208&rft.issn=0263-5747&rft.eissn=1469-8668&rft_id=info:doi/10.1017/S026357471300101X&rft_dat=%3Cproquest_cross%3E3267550761%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1513040549&rft_id=info:pmid/&rft_cupid=10_1017_S026357471300101X&rfr_iscdi=true