Distributed Particle Swarm Optimization for limited-time adaptation with real robots
Evaluative techniques offer a tremendous potential for online controller design. However, when the optimization space is large and the performance metric is noisy, the overall adaptation process becomes extremely time consuming. Distributing the adaptation process reduces the required time and incre...
Gespeichert in:
Veröffentlicht in: | Robotica 2014-03, Vol.32 (2), p.193-208 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 208 |
---|---|
container_issue | 2 |
container_start_page | 193 |
container_title | Robotica |
container_volume | 32 |
creator | Di Mario, Ezequiel Martinoli, Alcherio |
description | Evaluative techniques offer a tremendous potential for online controller design. However, when the optimization space is large and the performance metric is noisy, the overall adaptation process becomes extremely time consuming. Distributing the adaptation process reduces the required time and increases robustness to failure of individual agents. In this paper, we analyze the role of the four algorithmic parameters that determine the total evaluation time in a distributed implementation of a Particle Swarm Optimization (PSO) algorithm. For an obstacle avoidance case study using up to eight robots, we explore in simulation the lower boundaries of these parameters and propose a set of empirical guidelines for choosing their values. We then apply these guidelines to a real robot implementation and show that it is feasible to optimize 24 control parameters per robot within 2 h, a limited amount of time determined by the robots' battery life. We also show that a hybrid simulate-and-transfer approach coupled with a noise-resistant PSO algorithm can be used to further reduce experimental time as compared to a pure real-robot implementation. |
doi_str_mv | 10.1017/S026357471300101X |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1530990725</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S026357471300101X</cupid><sourcerecordid>3267550761</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-480710b00bc693b4b2fe3aa3237d01596d20d15a521b3b623f4a565fd80dc1e53</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYMoOI7-AHcBN26qN82j7VLGJwyMMCO4K0mbaoZ2UpOUQX-9KTMLUVxd7j3fOVwOQucErgiQ7HoJqaA8YxmhAPHyeoAmhIkiyYXID9FklJNRP0Yn3q8jQwnLJmh1a3xwRg1B1_hZumCqVuPlVroOL_pgOvMlg7Eb3FiH27hGLolnjWUt-7DTtia8Y6dli51VNvhTdNTI1uuz_Zyil_u71ewxmS8enmY386SiBQ0JyyEjoABUJQqqmEobTaWkKc1qILwQdQo14ZKnRFElUtowyQVv6hzqimhOp-hyl9s7-zFoH8rO-Eq3rdxoO_iScApFAVk6ohe_0LUd3CZ-F6nYGQPOikiRHVU5673TTdk700n3WRIox57LPz1HD917ZKecqd_0j-h_Xd-dS37Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1513040549</pqid></control><display><type>article</type><title>Distributed Particle Swarm Optimization for limited-time adaptation with real robots</title><source>Cambridge University Press Journals Complete</source><creator>Di Mario, Ezequiel ; Martinoli, Alcherio</creator><creatorcontrib>Di Mario, Ezequiel ; Martinoli, Alcherio</creatorcontrib><description>Evaluative techniques offer a tremendous potential for online controller design. However, when the optimization space is large and the performance metric is noisy, the overall adaptation process becomes extremely time consuming. Distributing the adaptation process reduces the required time and increases robustness to failure of individual agents. In this paper, we analyze the role of the four algorithmic parameters that determine the total evaluation time in a distributed implementation of a Particle Swarm Optimization (PSO) algorithm. For an obstacle avoidance case study using up to eight robots, we explore in simulation the lower boundaries of these parameters and propose a set of empirical guidelines for choosing their values. We then apply these guidelines to a real robot implementation and show that it is feasible to optimize 24 control parameters per robot within 2 h, a limited amount of time determined by the robots' battery life. We also show that a hybrid simulate-and-transfer approach coupled with a noise-resistant PSO algorithm can be used to further reduce experimental time as compared to a pure real-robot implementation.</description><identifier>ISSN: 0263-5747</identifier><identifier>EISSN: 1469-8668</identifier><identifier>DOI: 10.1017/S026357471300101X</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Adaptation ; Algorithms ; Boundaries ; Computer simulation ; Guidelines ; Robot control ; Robots ; Swarm intelligence</subject><ispartof>Robotica, 2014-03, Vol.32 (2), p.193-208</ispartof><rights>Copyright © Cambridge University Press 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-480710b00bc693b4b2fe3aa3237d01596d20d15a521b3b623f4a565fd80dc1e53</citedby><cites>FETCH-LOGICAL-c393t-480710b00bc693b4b2fe3aa3237d01596d20d15a521b3b623f4a565fd80dc1e53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S026357471300101X/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids></links><search><creatorcontrib>Di Mario, Ezequiel</creatorcontrib><creatorcontrib>Martinoli, Alcherio</creatorcontrib><title>Distributed Particle Swarm Optimization for limited-time adaptation with real robots</title><title>Robotica</title><addtitle>Robotica</addtitle><description>Evaluative techniques offer a tremendous potential for online controller design. However, when the optimization space is large and the performance metric is noisy, the overall adaptation process becomes extremely time consuming. Distributing the adaptation process reduces the required time and increases robustness to failure of individual agents. In this paper, we analyze the role of the four algorithmic parameters that determine the total evaluation time in a distributed implementation of a Particle Swarm Optimization (PSO) algorithm. For an obstacle avoidance case study using up to eight robots, we explore in simulation the lower boundaries of these parameters and propose a set of empirical guidelines for choosing their values. We then apply these guidelines to a real robot implementation and show that it is feasible to optimize 24 control parameters per robot within 2 h, a limited amount of time determined by the robots' battery life. We also show that a hybrid simulate-and-transfer approach coupled with a noise-resistant PSO algorithm can be used to further reduce experimental time as compared to a pure real-robot implementation.</description><subject>Adaptation</subject><subject>Algorithms</subject><subject>Boundaries</subject><subject>Computer simulation</subject><subject>Guidelines</subject><subject>Robot control</subject><subject>Robots</subject><subject>Swarm intelligence</subject><issn>0263-5747</issn><issn>1469-8668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEtLxDAUhYMoOI7-AHcBN26qN82j7VLGJwyMMCO4K0mbaoZ2UpOUQX-9KTMLUVxd7j3fOVwOQucErgiQ7HoJqaA8YxmhAPHyeoAmhIkiyYXID9FklJNRP0Yn3q8jQwnLJmh1a3xwRg1B1_hZumCqVuPlVroOL_pgOvMlg7Eb3FiH27hGLolnjWUt-7DTtia8Y6dli51VNvhTdNTI1uuz_Zyil_u71ewxmS8enmY386SiBQ0JyyEjoABUJQqqmEobTaWkKc1qILwQdQo14ZKnRFElUtowyQVv6hzqimhOp-hyl9s7-zFoH8rO-Eq3rdxoO_iScApFAVk6ohe_0LUd3CZ-F6nYGQPOikiRHVU5673TTdk700n3WRIox57LPz1HD917ZKecqd_0j-h_Xd-dS37Y</recordid><startdate>20140301</startdate><enddate>20140301</enddate><creator>Di Mario, Ezequiel</creator><creator>Martinoli, Alcherio</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20140301</creationdate><title>Distributed Particle Swarm Optimization for limited-time adaptation with real robots</title><author>Di Mario, Ezequiel ; Martinoli, Alcherio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-480710b00bc693b4b2fe3aa3237d01596d20d15a521b3b623f4a565fd80dc1e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adaptation</topic><topic>Algorithms</topic><topic>Boundaries</topic><topic>Computer simulation</topic><topic>Guidelines</topic><topic>Robot control</topic><topic>Robots</topic><topic>Swarm intelligence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Di Mario, Ezequiel</creatorcontrib><creatorcontrib>Martinoli, Alcherio</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Robotica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Di Mario, Ezequiel</au><au>Martinoli, Alcherio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distributed Particle Swarm Optimization for limited-time adaptation with real robots</atitle><jtitle>Robotica</jtitle><addtitle>Robotica</addtitle><date>2014-03-01</date><risdate>2014</risdate><volume>32</volume><issue>2</issue><spage>193</spage><epage>208</epage><pages>193-208</pages><issn>0263-5747</issn><eissn>1469-8668</eissn><abstract>Evaluative techniques offer a tremendous potential for online controller design. However, when the optimization space is large and the performance metric is noisy, the overall adaptation process becomes extremely time consuming. Distributing the adaptation process reduces the required time and increases robustness to failure of individual agents. In this paper, we analyze the role of the four algorithmic parameters that determine the total evaluation time in a distributed implementation of a Particle Swarm Optimization (PSO) algorithm. For an obstacle avoidance case study using up to eight robots, we explore in simulation the lower boundaries of these parameters and propose a set of empirical guidelines for choosing their values. We then apply these guidelines to a real robot implementation and show that it is feasible to optimize 24 control parameters per robot within 2 h, a limited amount of time determined by the robots' battery life. We also show that a hybrid simulate-and-transfer approach coupled with a noise-resistant PSO algorithm can be used to further reduce experimental time as compared to a pure real-robot implementation.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S026357471300101X</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0263-5747 |
ispartof | Robotica, 2014-03, Vol.32 (2), p.193-208 |
issn | 0263-5747 1469-8668 |
language | eng |
recordid | cdi_proquest_miscellaneous_1530990725 |
source | Cambridge University Press Journals Complete |
subjects | Adaptation Algorithms Boundaries Computer simulation Guidelines Robot control Robots Swarm intelligence |
title | Distributed Particle Swarm Optimization for limited-time adaptation with real robots |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T00%3A09%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distributed%20Particle%20Swarm%20Optimization%20for%20limited-time%20adaptation%20with%20real%20robots&rft.jtitle=Robotica&rft.au=Di%20Mario,%20Ezequiel&rft.date=2014-03-01&rft.volume=32&rft.issue=2&rft.spage=193&rft.epage=208&rft.pages=193-208&rft.issn=0263-5747&rft.eissn=1469-8668&rft_id=info:doi/10.1017/S026357471300101X&rft_dat=%3Cproquest_cross%3E3267550761%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1513040549&rft_id=info:pmid/&rft_cupid=10_1017_S026357471300101X&rfr_iscdi=true |