Multilevel thresholding for segmentation of medical brain images using real coded genetic algorithm

[Display omitted] •Kapur entropy method measuring the homogeneity of segmented classes.•T2 weighted axial MR brain images are considered for segmentation.•Higher entropy value and low standard deviation are explain the better and consistent performance of the algorithm. Medical image analysis is one...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Measurement : journal of the International Measurement Confederation 2014-01, Vol.47, p.558-568
Hauptverfasser: Manikandan, S., Ramar, K., Willjuice Iruthayarajan, M., Srinivasagan, K.G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 568
container_issue
container_start_page 558
container_title Measurement : journal of the International Measurement Confederation
container_volume 47
creator Manikandan, S.
Ramar, K.
Willjuice Iruthayarajan, M.
Srinivasagan, K.G.
description [Display omitted] •Kapur entropy method measuring the homogeneity of segmented classes.•T2 weighted axial MR brain images are considered for segmentation.•Higher entropy value and low standard deviation are explain the better and consistent performance of the algorithm. Medical image analysis is one of the major research areas in the last four decades. Many researchers have contributed quite good algorithms and reported results. In this paper, real coded genetic algorithm with Simulated Binary Crossover (SBX) based multilevel thresholding is used for the segmentation of medical brain images. The T2 weighted Magnetic Resonance Imaging (MRI) brain images are considered for image segmentation. The optimum multilevel thresholding is found by maximizing the entropy. The results are compared with the results of the existing algorithms like Nelder–Mead simplex, PSO, BF and ABF. The statistical performances of the 100 independent runs are reported. The results reveal that the performance of real coded genetic algorithm with SBX crossover based optimal multilevel thresholding for medical image is better and has consistent performance than already reported methods.
doi_str_mv 10.1016/j.measurement.2013.09.031
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1530990377</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0263224113004697</els_id><sourcerecordid>1530990377</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-82d192bc6c2df638ecca3ed8aa37618b042608770519b8ad0d5ac5c716d0c7463</originalsourceid><addsrcrecordid>eNqNkEFr3DAQhUVpoNs0_0G95WJ3JNmyfSxL0hRSemmhN6Edjb1aZCuR5ED_fb1sDznmNDB878H7GPssoBYg9JdTPZPNa6KZllJLEKqGoQYl3rGd6DtVNUL-ec92ILWqpGzEB_Yx5xMAaDXoHcMfayg-0AsFXo6J8jEG55eJjzHxTNO51hYfFx5HPpPzaAM_JOsX7mc7UeZrPuOJtj9GR45PtFDxyG2YYvLlOH9iV6MNmW7-32v2-_7u1_6hevz57fv-62OFqm1K1UsnBnlAjdKNWvWEaBW53lrVadEfoJEa-q6DVgyH3jpwrcUWO6EdYNdodc1uL71PKT6vlIuZfUYKwS4U12xEq2AYQHXdhg4XFFPMOdFontK2J_01AsxZrDmZV2LNWayBwWxit-z-kqVty4unZDJ6WnCTkwiLcdG_oeUf5H-J9w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1530990377</pqid></control><display><type>article</type><title>Multilevel thresholding for segmentation of medical brain images using real coded genetic algorithm</title><source>Access via ScienceDirect (Elsevier)</source><creator>Manikandan, S. ; Ramar, K. ; Willjuice Iruthayarajan, M. ; Srinivasagan, K.G.</creator><creatorcontrib>Manikandan, S. ; Ramar, K. ; Willjuice Iruthayarajan, M. ; Srinivasagan, K.G.</creatorcontrib><description>[Display omitted] •Kapur entropy method measuring the homogeneity of segmented classes.•T2 weighted axial MR brain images are considered for segmentation.•Higher entropy value and low standard deviation are explain the better and consistent performance of the algorithm. Medical image analysis is one of the major research areas in the last four decades. Many researchers have contributed quite good algorithms and reported results. In this paper, real coded genetic algorithm with Simulated Binary Crossover (SBX) based multilevel thresholding is used for the segmentation of medical brain images. The T2 weighted Magnetic Resonance Imaging (MRI) brain images are considered for image segmentation. The optimum multilevel thresholding is found by maximizing the entropy. The results are compared with the results of the existing algorithms like Nelder–Mead simplex, PSO, BF and ABF. The statistical performances of the 100 independent runs are reported. The results reveal that the performance of real coded genetic algorithm with SBX crossover based optimal multilevel thresholding for medical image is better and has consistent performance than already reported methods.</description><identifier>ISSN: 0263-2241</identifier><identifier>EISSN: 1873-412X</identifier><identifier>DOI: 10.1016/j.measurement.2013.09.031</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Brain ; Entropy ; Genetic algorithms ; Image segmentation ; Medical ; MRI brain image ; Multilevel ; Optimization ; Real coded genetic algorithm ; Segmentation ; Thresholds</subject><ispartof>Measurement : journal of the International Measurement Confederation, 2014-01, Vol.47, p.558-568</ispartof><rights>2013 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-82d192bc6c2df638ecca3ed8aa37618b042608770519b8ad0d5ac5c716d0c7463</citedby><cites>FETCH-LOGICAL-c354t-82d192bc6c2df638ecca3ed8aa37618b042608770519b8ad0d5ac5c716d0c7463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.measurement.2013.09.031$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Manikandan, S.</creatorcontrib><creatorcontrib>Ramar, K.</creatorcontrib><creatorcontrib>Willjuice Iruthayarajan, M.</creatorcontrib><creatorcontrib>Srinivasagan, K.G.</creatorcontrib><title>Multilevel thresholding for segmentation of medical brain images using real coded genetic algorithm</title><title>Measurement : journal of the International Measurement Confederation</title><description>[Display omitted] •Kapur entropy method measuring the homogeneity of segmented classes.•T2 weighted axial MR brain images are considered for segmentation.•Higher entropy value and low standard deviation are explain the better and consistent performance of the algorithm. Medical image analysis is one of the major research areas in the last four decades. Many researchers have contributed quite good algorithms and reported results. In this paper, real coded genetic algorithm with Simulated Binary Crossover (SBX) based multilevel thresholding is used for the segmentation of medical brain images. The T2 weighted Magnetic Resonance Imaging (MRI) brain images are considered for image segmentation. The optimum multilevel thresholding is found by maximizing the entropy. The results are compared with the results of the existing algorithms like Nelder–Mead simplex, PSO, BF and ABF. The statistical performances of the 100 independent runs are reported. The results reveal that the performance of real coded genetic algorithm with SBX crossover based optimal multilevel thresholding for medical image is better and has consistent performance than already reported methods.</description><subject>Brain</subject><subject>Entropy</subject><subject>Genetic algorithms</subject><subject>Image segmentation</subject><subject>Medical</subject><subject>MRI brain image</subject><subject>Multilevel</subject><subject>Optimization</subject><subject>Real coded genetic algorithm</subject><subject>Segmentation</subject><subject>Thresholds</subject><issn>0263-2241</issn><issn>1873-412X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkEFr3DAQhUVpoNs0_0G95WJ3JNmyfSxL0hRSemmhN6Edjb1aZCuR5ED_fb1sDznmNDB878H7GPssoBYg9JdTPZPNa6KZllJLEKqGoQYl3rGd6DtVNUL-ec92ILWqpGzEB_Yx5xMAaDXoHcMfayg-0AsFXo6J8jEG55eJjzHxTNO51hYfFx5HPpPzaAM_JOsX7mc7UeZrPuOJtj9GR45PtFDxyG2YYvLlOH9iV6MNmW7-32v2-_7u1_6hevz57fv-62OFqm1K1UsnBnlAjdKNWvWEaBW53lrVadEfoJEa-q6DVgyH3jpwrcUWO6EdYNdodc1uL71PKT6vlIuZfUYKwS4U12xEq2AYQHXdhg4XFFPMOdFontK2J_01AsxZrDmZV2LNWayBwWxit-z-kqVty4unZDJ6WnCTkwiLcdG_oeUf5H-J9w</recordid><startdate>201401</startdate><enddate>201401</enddate><creator>Manikandan, S.</creator><creator>Ramar, K.</creator><creator>Willjuice Iruthayarajan, M.</creator><creator>Srinivasagan, K.G.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201401</creationdate><title>Multilevel thresholding for segmentation of medical brain images using real coded genetic algorithm</title><author>Manikandan, S. ; Ramar, K. ; Willjuice Iruthayarajan, M. ; Srinivasagan, K.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-82d192bc6c2df638ecca3ed8aa37618b042608770519b8ad0d5ac5c716d0c7463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Brain</topic><topic>Entropy</topic><topic>Genetic algorithms</topic><topic>Image segmentation</topic><topic>Medical</topic><topic>MRI brain image</topic><topic>Multilevel</topic><topic>Optimization</topic><topic>Real coded genetic algorithm</topic><topic>Segmentation</topic><topic>Thresholds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Manikandan, S.</creatorcontrib><creatorcontrib>Ramar, K.</creatorcontrib><creatorcontrib>Willjuice Iruthayarajan, M.</creatorcontrib><creatorcontrib>Srinivasagan, K.G.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Measurement : journal of the International Measurement Confederation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Manikandan, S.</au><au>Ramar, K.</au><au>Willjuice Iruthayarajan, M.</au><au>Srinivasagan, K.G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multilevel thresholding for segmentation of medical brain images using real coded genetic algorithm</atitle><jtitle>Measurement : journal of the International Measurement Confederation</jtitle><date>2014-01</date><risdate>2014</risdate><volume>47</volume><spage>558</spage><epage>568</epage><pages>558-568</pages><issn>0263-2241</issn><eissn>1873-412X</eissn><abstract>[Display omitted] •Kapur entropy method measuring the homogeneity of segmented classes.•T2 weighted axial MR brain images are considered for segmentation.•Higher entropy value and low standard deviation are explain the better and consistent performance of the algorithm. Medical image analysis is one of the major research areas in the last four decades. Many researchers have contributed quite good algorithms and reported results. In this paper, real coded genetic algorithm with Simulated Binary Crossover (SBX) based multilevel thresholding is used for the segmentation of medical brain images. The T2 weighted Magnetic Resonance Imaging (MRI) brain images are considered for image segmentation. The optimum multilevel thresholding is found by maximizing the entropy. The results are compared with the results of the existing algorithms like Nelder–Mead simplex, PSO, BF and ABF. The statistical performances of the 100 independent runs are reported. The results reveal that the performance of real coded genetic algorithm with SBX crossover based optimal multilevel thresholding for medical image is better and has consistent performance than already reported methods.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.measurement.2013.09.031</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0263-2241
ispartof Measurement : journal of the International Measurement Confederation, 2014-01, Vol.47, p.558-568
issn 0263-2241
1873-412X
language eng
recordid cdi_proquest_miscellaneous_1530990377
source Access via ScienceDirect (Elsevier)
subjects Brain
Entropy
Genetic algorithms
Image segmentation
Medical
MRI brain image
Multilevel
Optimization
Real coded genetic algorithm
Segmentation
Thresholds
title Multilevel thresholding for segmentation of medical brain images using real coded genetic algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T19%3A47%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multilevel%20thresholding%20for%20segmentation%20of%20medical%20brain%20images%20using%20real%20coded%20genetic%20algorithm&rft.jtitle=Measurement%20:%20journal%20of%20the%20International%20Measurement%20Confederation&rft.au=Manikandan,%20S.&rft.date=2014-01&rft.volume=47&rft.spage=558&rft.epage=568&rft.pages=558-568&rft.issn=0263-2241&rft.eissn=1873-412X&rft_id=info:doi/10.1016/j.measurement.2013.09.031&rft_dat=%3Cproquest_cross%3E1530990377%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1530990377&rft_id=info:pmid/&rft_els_id=S0263224113004697&rfr_iscdi=true