Stopping rules for iterative methods in nonnegatively constrained deconvolution
We consider the two-dimensional discrete nonnegatively constrained deconvolution problem, whose goal is to reconstruct an object x⁎ from its image b obtained through an optical system and affected by noise. When the large size of the problem prevents regularization through a direct method, iterative...
Gespeichert in:
Veröffentlicht in: | Applied numerical mathematics 2014-01, Vol.75, p.154-166 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 166 |
---|---|
container_issue | |
container_start_page | 154 |
container_title | Applied numerical mathematics |
container_volume | 75 |
creator | Favati, P. Lotti, G. Menchi, O. Romani, F. |
description | We consider the two-dimensional discrete nonnegatively constrained deconvolution problem, whose goal is to reconstruct an object x⁎ from its image b obtained through an optical system and affected by noise. When the large size of the problem prevents regularization through a direct method, iterative methods enjoying the semi-convergence property, coupled with suitable strategies for enforcing nonnegativity, are suggested. For these methods an accurate detection of the stopping index is essential. In this paper we analyze various stopping rules and, with the aid of a large experimentation, we test their effect on three different widely used iterative regularizing methods. |
doi_str_mv | 10.1016/j.apnum.2013.07.006 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1530989896</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168927413001189</els_id><sourcerecordid>1530989896</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-cf325958775d18343c5d60f8de154c34ffa65fc44e875f797a1569215a9c9f3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwC1g8siTYcWwnAwOq-JIqdSi7ZTnn4iqxg-1U6r8ntMzohtOdnvekexC6p6SkhIrHfalHPw1lRSgriSwJERdoQRvJCl4LcokWM9UUbSXra3ST0p4QwnlNFmizzWEcnd_hOPWQsA0RuwxRZ3cAPED-Cl3CzmMfvIfdad0fsQk-5aidhw53ME-H0E_ZBX-LrqzuE9z99SXavr58rt6L9ebtY_W8LgxjIhfGsoq3vJGSd7RhNTO8E8Q2HVBeG1ZbqwW3pq6hkdzKVmrKRVtRrlvTWrZED-erYwzfE6SsBpcM9L32EKakKGekbeYSM8rOqIkhpQhWjdENOh4VJepXntqrkzz1K08RqWZ5c-rpnIL5h4ODqJJx4A10LoLJqgvu3_wP_Ep6rQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1530989896</pqid></control><display><type>article</type><title>Stopping rules for iterative methods in nonnegatively constrained deconvolution</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Favati, P. ; Lotti, G. ; Menchi, O. ; Romani, F.</creator><creatorcontrib>Favati, P. ; Lotti, G. ; Menchi, O. ; Romani, F.</creatorcontrib><description>We consider the two-dimensional discrete nonnegatively constrained deconvolution problem, whose goal is to reconstruct an object x⁎ from its image b obtained through an optical system and affected by noise. When the large size of the problem prevents regularization through a direct method, iterative methods enjoying the semi-convergence property, coupled with suitable strategies for enforcing nonnegativity, are suggested. For these methods an accurate detection of the stopping index is essential. In this paper we analyze various stopping rules and, with the aid of a large experimentation, we test their effect on three different widely used iterative regularizing methods.</description><identifier>ISSN: 0168-9274</identifier><identifier>EISSN: 1873-5460</identifier><identifier>DOI: 10.1016/j.apnum.2013.07.006</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Constraints ; Deconvolution ; Experimentation ; Iterative methods ; Mathematical models ; Nonnegatively constrained deconvolution ; Regularization ; Stopping rules ; Strategy ; Two dimensional</subject><ispartof>Applied numerical mathematics, 2014-01, Vol.75, p.154-166</ispartof><rights>2013 IMACS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-cf325958775d18343c5d60f8de154c34ffa65fc44e875f797a1569215a9c9f3</citedby><cites>FETCH-LOGICAL-c336t-cf325958775d18343c5d60f8de154c34ffa65fc44e875f797a1569215a9c9f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.apnum.2013.07.006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Favati, P.</creatorcontrib><creatorcontrib>Lotti, G.</creatorcontrib><creatorcontrib>Menchi, O.</creatorcontrib><creatorcontrib>Romani, F.</creatorcontrib><title>Stopping rules for iterative methods in nonnegatively constrained deconvolution</title><title>Applied numerical mathematics</title><description>We consider the two-dimensional discrete nonnegatively constrained deconvolution problem, whose goal is to reconstruct an object x⁎ from its image b obtained through an optical system and affected by noise. When the large size of the problem prevents regularization through a direct method, iterative methods enjoying the semi-convergence property, coupled with suitable strategies for enforcing nonnegativity, are suggested. For these methods an accurate detection of the stopping index is essential. In this paper we analyze various stopping rules and, with the aid of a large experimentation, we test their effect on three different widely used iterative regularizing methods.</description><subject>Constraints</subject><subject>Deconvolution</subject><subject>Experimentation</subject><subject>Iterative methods</subject><subject>Mathematical models</subject><subject>Nonnegatively constrained deconvolution</subject><subject>Regularization</subject><subject>Stopping rules</subject><subject>Strategy</subject><subject>Two dimensional</subject><issn>0168-9274</issn><issn>1873-5460</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwC1g8siTYcWwnAwOq-JIqdSi7ZTnn4iqxg-1U6r8ntMzohtOdnvekexC6p6SkhIrHfalHPw1lRSgriSwJERdoQRvJCl4LcokWM9UUbSXra3ST0p4QwnlNFmizzWEcnd_hOPWQsA0RuwxRZ3cAPED-Cl3CzmMfvIfdad0fsQk-5aidhw53ME-H0E_ZBX-LrqzuE9z99SXavr58rt6L9ebtY_W8LgxjIhfGsoq3vJGSd7RhNTO8E8Q2HVBeG1ZbqwW3pq6hkdzKVmrKRVtRrlvTWrZED-erYwzfE6SsBpcM9L32EKakKGekbeYSM8rOqIkhpQhWjdENOh4VJepXntqrkzz1K08RqWZ5c-rpnIL5h4ODqJJx4A10LoLJqgvu3_wP_Ep6rQ</recordid><startdate>201401</startdate><enddate>201401</enddate><creator>Favati, P.</creator><creator>Lotti, G.</creator><creator>Menchi, O.</creator><creator>Romani, F.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201401</creationdate><title>Stopping rules for iterative methods in nonnegatively constrained deconvolution</title><author>Favati, P. ; Lotti, G. ; Menchi, O. ; Romani, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-cf325958775d18343c5d60f8de154c34ffa65fc44e875f797a1569215a9c9f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Constraints</topic><topic>Deconvolution</topic><topic>Experimentation</topic><topic>Iterative methods</topic><topic>Mathematical models</topic><topic>Nonnegatively constrained deconvolution</topic><topic>Regularization</topic><topic>Stopping rules</topic><topic>Strategy</topic><topic>Two dimensional</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Favati, P.</creatorcontrib><creatorcontrib>Lotti, G.</creatorcontrib><creatorcontrib>Menchi, O.</creatorcontrib><creatorcontrib>Romani, F.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied numerical mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Favati, P.</au><au>Lotti, G.</au><au>Menchi, O.</au><au>Romani, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stopping rules for iterative methods in nonnegatively constrained deconvolution</atitle><jtitle>Applied numerical mathematics</jtitle><date>2014-01</date><risdate>2014</risdate><volume>75</volume><spage>154</spage><epage>166</epage><pages>154-166</pages><issn>0168-9274</issn><eissn>1873-5460</eissn><abstract>We consider the two-dimensional discrete nonnegatively constrained deconvolution problem, whose goal is to reconstruct an object x⁎ from its image b obtained through an optical system and affected by noise. When the large size of the problem prevents regularization through a direct method, iterative methods enjoying the semi-convergence property, coupled with suitable strategies for enforcing nonnegativity, are suggested. For these methods an accurate detection of the stopping index is essential. In this paper we analyze various stopping rules and, with the aid of a large experimentation, we test their effect on three different widely used iterative regularizing methods.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.apnum.2013.07.006</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0168-9274 |
ispartof | Applied numerical mathematics, 2014-01, Vol.75, p.154-166 |
issn | 0168-9274 1873-5460 |
language | eng |
recordid | cdi_proquest_miscellaneous_1530989896 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Constraints Deconvolution Experimentation Iterative methods Mathematical models Nonnegatively constrained deconvolution Regularization Stopping rules Strategy Two dimensional |
title | Stopping rules for iterative methods in nonnegatively constrained deconvolution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T10%3A07%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stopping%20rules%20for%20iterative%20methods%20in%20nonnegatively%20constrained%20deconvolution&rft.jtitle=Applied%20numerical%20mathematics&rft.au=Favati,%20P.&rft.date=2014-01&rft.volume=75&rft.spage=154&rft.epage=166&rft.pages=154-166&rft.issn=0168-9274&rft.eissn=1873-5460&rft_id=info:doi/10.1016/j.apnum.2013.07.006&rft_dat=%3Cproquest_cross%3E1530989896%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1530989896&rft_id=info:pmid/&rft_els_id=S0168927413001189&rfr_iscdi=true |