Stopping rules for iterative methods in nonnegatively constrained deconvolution

We consider the two-dimensional discrete nonnegatively constrained deconvolution problem, whose goal is to reconstruct an object x⁎ from its image b obtained through an optical system and affected by noise. When the large size of the problem prevents regularization through a direct method, iterative...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied numerical mathematics 2014-01, Vol.75, p.154-166
Hauptverfasser: Favati, P., Lotti, G., Menchi, O., Romani, F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 166
container_issue
container_start_page 154
container_title Applied numerical mathematics
container_volume 75
creator Favati, P.
Lotti, G.
Menchi, O.
Romani, F.
description We consider the two-dimensional discrete nonnegatively constrained deconvolution problem, whose goal is to reconstruct an object x⁎ from its image b obtained through an optical system and affected by noise. When the large size of the problem prevents regularization through a direct method, iterative methods enjoying the semi-convergence property, coupled with suitable strategies for enforcing nonnegativity, are suggested. For these methods an accurate detection of the stopping index is essential. In this paper we analyze various stopping rules and, with the aid of a large experimentation, we test their effect on three different widely used iterative regularizing methods.
doi_str_mv 10.1016/j.apnum.2013.07.006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1530989896</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168927413001189</els_id><sourcerecordid>1530989896</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-cf325958775d18343c5d60f8de154c34ffa65fc44e875f797a1569215a9c9f3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwC1g8siTYcWwnAwOq-JIqdSi7ZTnn4iqxg-1U6r8ntMzohtOdnvekexC6p6SkhIrHfalHPw1lRSgriSwJERdoQRvJCl4LcokWM9UUbSXra3ST0p4QwnlNFmizzWEcnd_hOPWQsA0RuwxRZ3cAPED-Cl3CzmMfvIfdad0fsQk-5aidhw53ME-H0E_ZBX-LrqzuE9z99SXavr58rt6L9ebtY_W8LgxjIhfGsoq3vJGSd7RhNTO8E8Q2HVBeG1ZbqwW3pq6hkdzKVmrKRVtRrlvTWrZED-erYwzfE6SsBpcM9L32EKakKGekbeYSM8rOqIkhpQhWjdENOh4VJepXntqrkzz1K08RqWZ5c-rpnIL5h4ODqJJx4A10LoLJqgvu3_wP_Ep6rQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1530989896</pqid></control><display><type>article</type><title>Stopping rules for iterative methods in nonnegatively constrained deconvolution</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Favati, P. ; Lotti, G. ; Menchi, O. ; Romani, F.</creator><creatorcontrib>Favati, P. ; Lotti, G. ; Menchi, O. ; Romani, F.</creatorcontrib><description>We consider the two-dimensional discrete nonnegatively constrained deconvolution problem, whose goal is to reconstruct an object x⁎ from its image b obtained through an optical system and affected by noise. When the large size of the problem prevents regularization through a direct method, iterative methods enjoying the semi-convergence property, coupled with suitable strategies for enforcing nonnegativity, are suggested. For these methods an accurate detection of the stopping index is essential. In this paper we analyze various stopping rules and, with the aid of a large experimentation, we test their effect on three different widely used iterative regularizing methods.</description><identifier>ISSN: 0168-9274</identifier><identifier>EISSN: 1873-5460</identifier><identifier>DOI: 10.1016/j.apnum.2013.07.006</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Constraints ; Deconvolution ; Experimentation ; Iterative methods ; Mathematical models ; Nonnegatively constrained deconvolution ; Regularization ; Stopping rules ; Strategy ; Two dimensional</subject><ispartof>Applied numerical mathematics, 2014-01, Vol.75, p.154-166</ispartof><rights>2013 IMACS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-cf325958775d18343c5d60f8de154c34ffa65fc44e875f797a1569215a9c9f3</citedby><cites>FETCH-LOGICAL-c336t-cf325958775d18343c5d60f8de154c34ffa65fc44e875f797a1569215a9c9f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.apnum.2013.07.006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Favati, P.</creatorcontrib><creatorcontrib>Lotti, G.</creatorcontrib><creatorcontrib>Menchi, O.</creatorcontrib><creatorcontrib>Romani, F.</creatorcontrib><title>Stopping rules for iterative methods in nonnegatively constrained deconvolution</title><title>Applied numerical mathematics</title><description>We consider the two-dimensional discrete nonnegatively constrained deconvolution problem, whose goal is to reconstruct an object x⁎ from its image b obtained through an optical system and affected by noise. When the large size of the problem prevents regularization through a direct method, iterative methods enjoying the semi-convergence property, coupled with suitable strategies for enforcing nonnegativity, are suggested. For these methods an accurate detection of the stopping index is essential. In this paper we analyze various stopping rules and, with the aid of a large experimentation, we test their effect on three different widely used iterative regularizing methods.</description><subject>Constraints</subject><subject>Deconvolution</subject><subject>Experimentation</subject><subject>Iterative methods</subject><subject>Mathematical models</subject><subject>Nonnegatively constrained deconvolution</subject><subject>Regularization</subject><subject>Stopping rules</subject><subject>Strategy</subject><subject>Two dimensional</subject><issn>0168-9274</issn><issn>1873-5460</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwC1g8siTYcWwnAwOq-JIqdSi7ZTnn4iqxg-1U6r8ntMzohtOdnvekexC6p6SkhIrHfalHPw1lRSgriSwJERdoQRvJCl4LcokWM9UUbSXra3ST0p4QwnlNFmizzWEcnd_hOPWQsA0RuwxRZ3cAPED-Cl3CzmMfvIfdad0fsQk-5aidhw53ME-H0E_ZBX-LrqzuE9z99SXavr58rt6L9ebtY_W8LgxjIhfGsoq3vJGSd7RhNTO8E8Q2HVBeG1ZbqwW3pq6hkdzKVmrKRVtRrlvTWrZED-erYwzfE6SsBpcM9L32EKakKGekbeYSM8rOqIkhpQhWjdENOh4VJepXntqrkzz1K08RqWZ5c-rpnIL5h4ODqJJx4A10LoLJqgvu3_wP_Ep6rQ</recordid><startdate>201401</startdate><enddate>201401</enddate><creator>Favati, P.</creator><creator>Lotti, G.</creator><creator>Menchi, O.</creator><creator>Romani, F.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201401</creationdate><title>Stopping rules for iterative methods in nonnegatively constrained deconvolution</title><author>Favati, P. ; Lotti, G. ; Menchi, O. ; Romani, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-cf325958775d18343c5d60f8de154c34ffa65fc44e875f797a1569215a9c9f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Constraints</topic><topic>Deconvolution</topic><topic>Experimentation</topic><topic>Iterative methods</topic><topic>Mathematical models</topic><topic>Nonnegatively constrained deconvolution</topic><topic>Regularization</topic><topic>Stopping rules</topic><topic>Strategy</topic><topic>Two dimensional</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Favati, P.</creatorcontrib><creatorcontrib>Lotti, G.</creatorcontrib><creatorcontrib>Menchi, O.</creatorcontrib><creatorcontrib>Romani, F.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied numerical mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Favati, P.</au><au>Lotti, G.</au><au>Menchi, O.</au><au>Romani, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stopping rules for iterative methods in nonnegatively constrained deconvolution</atitle><jtitle>Applied numerical mathematics</jtitle><date>2014-01</date><risdate>2014</risdate><volume>75</volume><spage>154</spage><epage>166</epage><pages>154-166</pages><issn>0168-9274</issn><eissn>1873-5460</eissn><abstract>We consider the two-dimensional discrete nonnegatively constrained deconvolution problem, whose goal is to reconstruct an object x⁎ from its image b obtained through an optical system and affected by noise. When the large size of the problem prevents regularization through a direct method, iterative methods enjoying the semi-convergence property, coupled with suitable strategies for enforcing nonnegativity, are suggested. For these methods an accurate detection of the stopping index is essential. In this paper we analyze various stopping rules and, with the aid of a large experimentation, we test their effect on three different widely used iterative regularizing methods.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.apnum.2013.07.006</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0168-9274
ispartof Applied numerical mathematics, 2014-01, Vol.75, p.154-166
issn 0168-9274
1873-5460
language eng
recordid cdi_proquest_miscellaneous_1530989896
source ScienceDirect Journals (5 years ago - present)
subjects Constraints
Deconvolution
Experimentation
Iterative methods
Mathematical models
Nonnegatively constrained deconvolution
Regularization
Stopping rules
Strategy
Two dimensional
title Stopping rules for iterative methods in nonnegatively constrained deconvolution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T10%3A07%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stopping%20rules%20for%20iterative%20methods%20in%20nonnegatively%20constrained%20deconvolution&rft.jtitle=Applied%20numerical%20mathematics&rft.au=Favati,%20P.&rft.date=2014-01&rft.volume=75&rft.spage=154&rft.epage=166&rft.pages=154-166&rft.issn=0168-9274&rft.eissn=1873-5460&rft_id=info:doi/10.1016/j.apnum.2013.07.006&rft_dat=%3Cproquest_cross%3E1530989896%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1530989896&rft_id=info:pmid/&rft_els_id=S0168927413001189&rfr_iscdi=true