tilting theory
The aim of this paper is to introduce $\tau $ -tilting theory, which ‘completes’ (classical) tilting theory from the viewpoint of mutation. It is well known in tilting theory that an almost complete tilting module for any finite-dimensional algebra over a field $k$ is a direct summand of exactly one...
Gespeichert in:
Veröffentlicht in: | Compositio mathematica 2014-03, Vol.150 (3), p.415-452 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 452 |
---|---|
container_issue | 3 |
container_start_page | 415 |
container_title | Compositio mathematica |
container_volume | 150 |
creator | Adachi, Takahide Iyama, Osamu Reiten, Idun |
description | The aim of this paper is to introduce
$\tau $
-tilting theory, which ‘completes’ (classical) tilting theory from the viewpoint of mutation. It is well known in tilting theory that an almost complete tilting module for any finite-dimensional algebra over a field
$k$
is a direct summand of exactly one or two tilting modules. An important property in cluster-tilting theory is that an almost complete cluster-tilting object in a 2-CY triangulated category is a direct summand of exactly two cluster-tilting objects. Reformulated for path algebras
$kQ$
, this says that an almost complete support tilting module has exactly two complements. We generalize (support) tilting modules to what we call (support)
$\tau $
-tilting modules, and show that an almost complete support
$\tau $
-tilting module has exactly two complements for any finite-dimensional algebra. For a finite-dimensional
$k$
-algebra
$\Lambda $
, we establish bijections between functorially finite torsion classes in
$ \mathsf{mod} \hspace{0.167em} \Lambda $
, support
$\tau $
-tilting modules and two-term silting complexes in
${ \mathsf{K} }^{\mathrm{b} } ( \mathsf{proj} \hspace{0.167em} \Lambda )$
. Moreover, these objects correspond bijectively to cluster-tilting objects in
$ \mathcal{C} $
if
$\Lambda $
is a 2-CY tilted algebra associated with a 2-CY triangulated category
$ \mathcal{C} $
. As an application, we show that the property of having two complements holds also for two-term silting complexes in
${ \mathsf{K} }^{\mathrm{b} } ( \mathsf{proj} \hspace{0.167em} \Lambda )$
. |
doi_str_mv | 10.1112/S0010437X13007422 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1530988773</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1530988773</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2602-9a363f3a413375c2f968160402dda84018ba28153dc7e7207d6921f68cc37d5c3</originalsourceid><addsrcrecordid>eNplkL1LxEAUxBdRMEbt7QQbm-h7bz9TyuGpcGChgt2ybjaaI5ecu0lx_70JZ6XVFPObYRjGLhBuEJFuXwAQBNfvyAG0IDpgGUoNhTRCHbJstovZP2YnKa0BgAyZjJ0PTTs03efl8BX6uDtlR7VrUzj71Zy9Le9fF4_F6vnhaXG3KjwpoKJ0XPGaO4Gca-mpLpVBBQKoqpwRgObDkUHJK6-DJtCVKglrZbznupKe5-x637uN_fcY0mA3TfKhbV0X-jHZKQqlMVrzCb36g677MXbTuokiIVUppzE5wz3lY59SDLXdxmbj4s4i2Pkh--8h_gO7C1Q8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1524569536</pqid></control><display><type>article</type><title>tilting theory</title><source>Cambridge Journals Online</source><source>EZB Electronic Journals Library</source><creator>Adachi, Takahide ; Iyama, Osamu ; Reiten, Idun</creator><creatorcontrib>Adachi, Takahide ; Iyama, Osamu ; Reiten, Idun</creatorcontrib><description>The aim of this paper is to introduce
$\tau $
-tilting theory, which ‘completes’ (classical) tilting theory from the viewpoint of mutation. It is well known in tilting theory that an almost complete tilting module for any finite-dimensional algebra over a field
$k$
is a direct summand of exactly one or two tilting modules. An important property in cluster-tilting theory is that an almost complete cluster-tilting object in a 2-CY triangulated category is a direct summand of exactly two cluster-tilting objects. Reformulated for path algebras
$kQ$
, this says that an almost complete support tilting module has exactly two complements. We generalize (support) tilting modules to what we call (support)
$\tau $
-tilting modules, and show that an almost complete support
$\tau $
-tilting module has exactly two complements for any finite-dimensional algebra. For a finite-dimensional
$k$
-algebra
$\Lambda $
, we establish bijections between functorially finite torsion classes in
$ \mathsf{mod} \hspace{0.167em} \Lambda $
, support
$\tau $
-tilting modules and two-term silting complexes in
${ \mathsf{K} }^{\mathrm{b} } ( \mathsf{proj} \hspace{0.167em} \Lambda )$
. Moreover, these objects correspond bijectively to cluster-tilting objects in
$ \mathcal{C} $
if
$\Lambda $
is a 2-CY tilted algebra associated with a 2-CY triangulated category
$ \mathcal{C} $
. As an application, we show that the property of having two complements holds also for two-term silting complexes in
${ \mathsf{K} }^{\mathrm{b} } ( \mathsf{proj} \hspace{0.167em} \Lambda )$
.</description><identifier>ISSN: 0010-437X</identifier><identifier>EISSN: 1570-5846</identifier><identifier>DOI: 10.1112/S0010437X13007422</identifier><language>eng</language><publisher>London: Cambridge University Press</publisher><subject>Algebra ; Categories ; Clusters ; Complement ; Mathematical analysis ; Mathematical models ; Modules ; Mutations ; Torsion</subject><ispartof>Compositio mathematica, 2014-03, Vol.150 (3), p.415-452</ispartof><rights>The Author(s) 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2602-9a363f3a413375c2f968160402dda84018ba28153dc7e7207d6921f68cc37d5c3</citedby><cites>FETCH-LOGICAL-c2602-9a363f3a413375c2f968160402dda84018ba28153dc7e7207d6921f68cc37d5c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Adachi, Takahide</creatorcontrib><creatorcontrib>Iyama, Osamu</creatorcontrib><creatorcontrib>Reiten, Idun</creatorcontrib><title>tilting theory</title><title>Compositio mathematica</title><description>The aim of this paper is to introduce
$\tau $
-tilting theory, which ‘completes’ (classical) tilting theory from the viewpoint of mutation. It is well known in tilting theory that an almost complete tilting module for any finite-dimensional algebra over a field
$k$
is a direct summand of exactly one or two tilting modules. An important property in cluster-tilting theory is that an almost complete cluster-tilting object in a 2-CY triangulated category is a direct summand of exactly two cluster-tilting objects. Reformulated for path algebras
$kQ$
, this says that an almost complete support tilting module has exactly two complements. We generalize (support) tilting modules to what we call (support)
$\tau $
-tilting modules, and show that an almost complete support
$\tau $
-tilting module has exactly two complements for any finite-dimensional algebra. For a finite-dimensional
$k$
-algebra
$\Lambda $
, we establish bijections between functorially finite torsion classes in
$ \mathsf{mod} \hspace{0.167em} \Lambda $
, support
$\tau $
-tilting modules and two-term silting complexes in
${ \mathsf{K} }^{\mathrm{b} } ( \mathsf{proj} \hspace{0.167em} \Lambda )$
. Moreover, these objects correspond bijectively to cluster-tilting objects in
$ \mathcal{C} $
if
$\Lambda $
is a 2-CY tilted algebra associated with a 2-CY triangulated category
$ \mathcal{C} $
. As an application, we show that the property of having two complements holds also for two-term silting complexes in
${ \mathsf{K} }^{\mathrm{b} } ( \mathsf{proj} \hspace{0.167em} \Lambda )$
.</description><subject>Algebra</subject><subject>Categories</subject><subject>Clusters</subject><subject>Complement</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Modules</subject><subject>Mutations</subject><subject>Torsion</subject><issn>0010-437X</issn><issn>1570-5846</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNplkL1LxEAUxBdRMEbt7QQbm-h7bz9TyuGpcGChgt2ybjaaI5ecu0lx_70JZ6XVFPObYRjGLhBuEJFuXwAQBNfvyAG0IDpgGUoNhTRCHbJstovZP2YnKa0BgAyZjJ0PTTs03efl8BX6uDtlR7VrUzj71Zy9Le9fF4_F6vnhaXG3KjwpoKJ0XPGaO4Gca-mpLpVBBQKoqpwRgObDkUHJK6-DJtCVKglrZbznupKe5-x637uN_fcY0mA3TfKhbV0X-jHZKQqlMVrzCb36g677MXbTuokiIVUppzE5wz3lY59SDLXdxmbj4s4i2Pkh--8h_gO7C1Q8</recordid><startdate>20140301</startdate><enddate>20140301</enddate><creator>Adachi, Takahide</creator><creator>Iyama, Osamu</creator><creator>Reiten, Idun</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20140301</creationdate><title>tilting theory</title><author>Adachi, Takahide ; Iyama, Osamu ; Reiten, Idun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2602-9a363f3a413375c2f968160402dda84018ba28153dc7e7207d6921f68cc37d5c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algebra</topic><topic>Categories</topic><topic>Clusters</topic><topic>Complement</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Modules</topic><topic>Mutations</topic><topic>Torsion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adachi, Takahide</creatorcontrib><creatorcontrib>Iyama, Osamu</creatorcontrib><creatorcontrib>Reiten, Idun</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Compositio mathematica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adachi, Takahide</au><au>Iyama, Osamu</au><au>Reiten, Idun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>tilting theory</atitle><jtitle>Compositio mathematica</jtitle><date>2014-03-01</date><risdate>2014</risdate><volume>150</volume><issue>3</issue><spage>415</spage><epage>452</epage><pages>415-452</pages><issn>0010-437X</issn><eissn>1570-5846</eissn><abstract>The aim of this paper is to introduce
$\tau $
-tilting theory, which ‘completes’ (classical) tilting theory from the viewpoint of mutation. It is well known in tilting theory that an almost complete tilting module for any finite-dimensional algebra over a field
$k$
is a direct summand of exactly one or two tilting modules. An important property in cluster-tilting theory is that an almost complete cluster-tilting object in a 2-CY triangulated category is a direct summand of exactly two cluster-tilting objects. Reformulated for path algebras
$kQ$
, this says that an almost complete support tilting module has exactly two complements. We generalize (support) tilting modules to what we call (support)
$\tau $
-tilting modules, and show that an almost complete support
$\tau $
-tilting module has exactly two complements for any finite-dimensional algebra. For a finite-dimensional
$k$
-algebra
$\Lambda $
, we establish bijections between functorially finite torsion classes in
$ \mathsf{mod} \hspace{0.167em} \Lambda $
, support
$\tau $
-tilting modules and two-term silting complexes in
${ \mathsf{K} }^{\mathrm{b} } ( \mathsf{proj} \hspace{0.167em} \Lambda )$
. Moreover, these objects correspond bijectively to cluster-tilting objects in
$ \mathcal{C} $
if
$\Lambda $
is a 2-CY tilted algebra associated with a 2-CY triangulated category
$ \mathcal{C} $
. As an application, we show that the property of having two complements holds also for two-term silting complexes in
${ \mathsf{K} }^{\mathrm{b} } ( \mathsf{proj} \hspace{0.167em} \Lambda )$
.</abstract><cop>London</cop><pub>Cambridge University Press</pub><doi>10.1112/S0010437X13007422</doi><tpages>38</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-437X |
ispartof | Compositio mathematica, 2014-03, Vol.150 (3), p.415-452 |
issn | 0010-437X 1570-5846 |
language | eng |
recordid | cdi_proquest_miscellaneous_1530988773 |
source | Cambridge Journals Online; EZB Electronic Journals Library |
subjects | Algebra Categories Clusters Complement Mathematical analysis Mathematical models Modules Mutations Torsion |
title | tilting theory |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T16%3A22%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=tilting%20theory&rft.jtitle=Compositio%20mathematica&rft.au=Adachi,%20Takahide&rft.date=2014-03-01&rft.volume=150&rft.issue=3&rft.spage=415&rft.epage=452&rft.pages=415-452&rft.issn=0010-437X&rft.eissn=1570-5846&rft_id=info:doi/10.1112/S0010437X13007422&rft_dat=%3Cproquest_cross%3E1530988773%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1524569536&rft_id=info:pmid/&rfr_iscdi=true |