Hydrogen storage characteristics of Ti2Ni alloy synthesized by the electro-deoxidation technique

Ti2Ni alloy was synthesized in the molten CaCl2 electrolyte by the electro-deoxidation method at 900 °C and the electrochemical hydrogen storage characteristics of the synthesized alloy was observed. The X-ray diffraction peaks indicated that stoichiometric oxides in TiO2–ZrO2–NiO mixture reduced to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Intermetallics 2014-03, Vol.46, p.51-55
Hauptverfasser: Anik, Mustafa, Baksan, Bedri, Orbay, Tuğba Ölçer, Küçükdeveci, Nilüfer, Aybar, Alanur Binal, Özden, Reşat Can, Gaşan, Hakan, Koç, Nurşen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 55
container_issue
container_start_page 51
container_title Intermetallics
container_volume 46
creator Anik, Mustafa
Baksan, Bedri
Orbay, Tuğba Ölçer
Küçükdeveci, Nilüfer
Aybar, Alanur Binal
Özden, Reşat Can
Gaşan, Hakan
Koç, Nurşen
description Ti2Ni alloy was synthesized in the molten CaCl2 electrolyte by the electro-deoxidation method at 900 °C and the electrochemical hydrogen storage characteristics of the synthesized alloy was observed. The X-ray diffraction peaks indicated that stoichiometric oxides in TiO2–ZrO2–NiO mixture reduced to Ti3O5, CaTiO3, CaZrO3, Ni and Ti2O3 within 5 h electro-deoxidation process. Extension of the electro-deoxidation time to 10 h caused formations of TiO and equilibrium Ti2Ni phase. After 24 h electro-deoxidation the target alloy with the equilibrium Ti2Ni phase structure and the maximum amount of the dissolved Zr in it was obtained. It was observed that the synthesized alloy had maximum discharge capacity of 200 mA h g−1. Upon increase in the charge/discharge cycles, however, the discharge capacity decayed sharply. According to the gathered EIS data at various DODs, the rapid degradation in the electrode performance of Ti2Ni alloy was attributed to the developed barrier oxide layer on the electrode surface. •Ti2Ni alloy was synthesized by the electro-deoxidation method at 900 °C.•Ti3O5, CaTiO3, CaZrO3, Ni and Ti2O3 were reduction products after 5 h deoxidation.•Ti2Ni phase formed after 10 h deoxidation and Zr dissolved in this phase.•The maximum discharge capacity of the synthesized alloy was 200 mA h g−1.
doi_str_mv 10.1016/j.intermet.2013.10.026
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1530988607</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0966979513002896</els_id><sourcerecordid>1530988607</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-1fa5e0205815cf80e3eb5da4ac5173aeab1beff90c40f96f238a47ea22b27bd83</originalsourceid><addsrcrecordid>eNqFkDtPAzEQhF2ARHj8BeSS5oIf53t0oAgIUgRNqI3PXieOLudgO4jj1-MoUFPtajQzq_0QuqZkSgmtbjdTNyQIW0hTRijP4pSw6gRNSFtVRVu34gydx7ghhNaEiwl6n48m-BUMOCYf1AqwXqugdC5xMTkdsbd46diLw6rv_YjjOKQ1RPcNBncjzjuGHnQKvjDgv5xRyfkBJ9DrwX3s4RKdWtVHuPqdF-jt8WE5mxeL16fn2f2i0LwUqaBWCSCMiIYKbRsCHDphVKm0oDVXoDragbUt0SWxbWUZb1RZg2KsY3VnGn6Bbo69u-Dz2Zjk1kUNfa8G8PsoqeCkbZqK1NlaHa06-BgDWLkLbqvCKCmRB4xyI_8wygPGg54x5uDdMQj5kU8HQUbtYNBgXMgIpPHuv4of89iEKQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1530988607</pqid></control><display><type>article</type><title>Hydrogen storage characteristics of Ti2Ni alloy synthesized by the electro-deoxidation technique</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Anik, Mustafa ; Baksan, Bedri ; Orbay, Tuğba Ölçer ; Küçükdeveci, Nilüfer ; Aybar, Alanur Binal ; Özden, Reşat Can ; Gaşan, Hakan ; Koç, Nurşen</creator><creatorcontrib>Anik, Mustafa ; Baksan, Bedri ; Orbay, Tuğba Ölçer ; Küçükdeveci, Nilüfer ; Aybar, Alanur Binal ; Özden, Reşat Can ; Gaşan, Hakan ; Koç, Nurşen</creatorcontrib><description>Ti2Ni alloy was synthesized in the molten CaCl2 electrolyte by the electro-deoxidation method at 900 °C and the electrochemical hydrogen storage characteristics of the synthesized alloy was observed. The X-ray diffraction peaks indicated that stoichiometric oxides in TiO2–ZrO2–NiO mixture reduced to Ti3O5, CaTiO3, CaZrO3, Ni and Ti2O3 within 5 h electro-deoxidation process. Extension of the electro-deoxidation time to 10 h caused formations of TiO and equilibrium Ti2Ni phase. After 24 h electro-deoxidation the target alloy with the equilibrium Ti2Ni phase structure and the maximum amount of the dissolved Zr in it was obtained. It was observed that the synthesized alloy had maximum discharge capacity of 200 mA h g−1. Upon increase in the charge/discharge cycles, however, the discharge capacity decayed sharply. According to the gathered EIS data at various DODs, the rapid degradation in the electrode performance of Ti2Ni alloy was attributed to the developed barrier oxide layer on the electrode surface. •Ti2Ni alloy was synthesized by the electro-deoxidation method at 900 °C.•Ti3O5, CaTiO3, CaZrO3, Ni and Ti2O3 were reduction products after 5 h deoxidation.•Ti2Ni phase formed after 10 h deoxidation and Zr dissolved in this phase.•The maximum discharge capacity of the synthesized alloy was 200 mA h g−1.</description><identifier>ISSN: 0966-9795</identifier><identifier>DOI: 10.1016/j.intermet.2013.10.026</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>A. Ternary alloy systems ; Alloy development ; B. Hydrogen storage ; C. Reaction synthesis ; Charge ; Discharge ; Electrochemical impedance spectroscopy ; Electrodes ; F. Diffraction ; F. Electrochemical characterization ; G. Energy systems ; Hydrogen storage ; Oxides ; Titanium dioxide</subject><ispartof>Intermetallics, 2014-03, Vol.46, p.51-55</ispartof><rights>2013 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c345t-1fa5e0205815cf80e3eb5da4ac5173aeab1beff90c40f96f238a47ea22b27bd83</citedby><cites>FETCH-LOGICAL-c345t-1fa5e0205815cf80e3eb5da4ac5173aeab1beff90c40f96f238a47ea22b27bd83</cites><orcidid>0000-0003-0166-7862</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0966979513002896$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Anik, Mustafa</creatorcontrib><creatorcontrib>Baksan, Bedri</creatorcontrib><creatorcontrib>Orbay, Tuğba Ölçer</creatorcontrib><creatorcontrib>Küçükdeveci, Nilüfer</creatorcontrib><creatorcontrib>Aybar, Alanur Binal</creatorcontrib><creatorcontrib>Özden, Reşat Can</creatorcontrib><creatorcontrib>Gaşan, Hakan</creatorcontrib><creatorcontrib>Koç, Nurşen</creatorcontrib><title>Hydrogen storage characteristics of Ti2Ni alloy synthesized by the electro-deoxidation technique</title><title>Intermetallics</title><description>Ti2Ni alloy was synthesized in the molten CaCl2 electrolyte by the electro-deoxidation method at 900 °C and the electrochemical hydrogen storage characteristics of the synthesized alloy was observed. The X-ray diffraction peaks indicated that stoichiometric oxides in TiO2–ZrO2–NiO mixture reduced to Ti3O5, CaTiO3, CaZrO3, Ni and Ti2O3 within 5 h electro-deoxidation process. Extension of the electro-deoxidation time to 10 h caused formations of TiO and equilibrium Ti2Ni phase. After 24 h electro-deoxidation the target alloy with the equilibrium Ti2Ni phase structure and the maximum amount of the dissolved Zr in it was obtained. It was observed that the synthesized alloy had maximum discharge capacity of 200 mA h g−1. Upon increase in the charge/discharge cycles, however, the discharge capacity decayed sharply. According to the gathered EIS data at various DODs, the rapid degradation in the electrode performance of Ti2Ni alloy was attributed to the developed barrier oxide layer on the electrode surface. •Ti2Ni alloy was synthesized by the electro-deoxidation method at 900 °C.•Ti3O5, CaTiO3, CaZrO3, Ni and Ti2O3 were reduction products after 5 h deoxidation.•Ti2Ni phase formed after 10 h deoxidation and Zr dissolved in this phase.•The maximum discharge capacity of the synthesized alloy was 200 mA h g−1.</description><subject>A. Ternary alloy systems</subject><subject>Alloy development</subject><subject>B. Hydrogen storage</subject><subject>C. Reaction synthesis</subject><subject>Charge</subject><subject>Discharge</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Electrodes</subject><subject>F. Diffraction</subject><subject>F. Electrochemical characterization</subject><subject>G. Energy systems</subject><subject>Hydrogen storage</subject><subject>Oxides</subject><subject>Titanium dioxide</subject><issn>0966-9795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkDtPAzEQhF2ARHj8BeSS5oIf53t0oAgIUgRNqI3PXieOLudgO4jj1-MoUFPtajQzq_0QuqZkSgmtbjdTNyQIW0hTRijP4pSw6gRNSFtVRVu34gydx7ghhNaEiwl6n48m-BUMOCYf1AqwXqugdC5xMTkdsbd46diLw6rv_YjjOKQ1RPcNBncjzjuGHnQKvjDgv5xRyfkBJ9DrwX3s4RKdWtVHuPqdF-jt8WE5mxeL16fn2f2i0LwUqaBWCSCMiIYKbRsCHDphVKm0oDVXoDragbUt0SWxbWUZb1RZg2KsY3VnGn6Bbo69u-Dz2Zjk1kUNfa8G8PsoqeCkbZqK1NlaHa06-BgDWLkLbqvCKCmRB4xyI_8wygPGg54x5uDdMQj5kU8HQUbtYNBgXMgIpPHuv4of89iEKQ</recordid><startdate>20140301</startdate><enddate>20140301</enddate><creator>Anik, Mustafa</creator><creator>Baksan, Bedri</creator><creator>Orbay, Tuğba Ölçer</creator><creator>Küçükdeveci, Nilüfer</creator><creator>Aybar, Alanur Binal</creator><creator>Özden, Reşat Can</creator><creator>Gaşan, Hakan</creator><creator>Koç, Nurşen</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-0166-7862</orcidid></search><sort><creationdate>20140301</creationdate><title>Hydrogen storage characteristics of Ti2Ni alloy synthesized by the electro-deoxidation technique</title><author>Anik, Mustafa ; Baksan, Bedri ; Orbay, Tuğba Ölçer ; Küçükdeveci, Nilüfer ; Aybar, Alanur Binal ; Özden, Reşat Can ; Gaşan, Hakan ; Koç, Nurşen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-1fa5e0205815cf80e3eb5da4ac5173aeab1beff90c40f96f238a47ea22b27bd83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>A. Ternary alloy systems</topic><topic>Alloy development</topic><topic>B. Hydrogen storage</topic><topic>C. Reaction synthesis</topic><topic>Charge</topic><topic>Discharge</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Electrodes</topic><topic>F. Diffraction</topic><topic>F. Electrochemical characterization</topic><topic>G. Energy systems</topic><topic>Hydrogen storage</topic><topic>Oxides</topic><topic>Titanium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anik, Mustafa</creatorcontrib><creatorcontrib>Baksan, Bedri</creatorcontrib><creatorcontrib>Orbay, Tuğba Ölçer</creatorcontrib><creatorcontrib>Küçükdeveci, Nilüfer</creatorcontrib><creatorcontrib>Aybar, Alanur Binal</creatorcontrib><creatorcontrib>Özden, Reşat Can</creatorcontrib><creatorcontrib>Gaşan, Hakan</creatorcontrib><creatorcontrib>Koç, Nurşen</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>Intermetallics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anik, Mustafa</au><au>Baksan, Bedri</au><au>Orbay, Tuğba Ölçer</au><au>Küçükdeveci, Nilüfer</au><au>Aybar, Alanur Binal</au><au>Özden, Reşat Can</au><au>Gaşan, Hakan</au><au>Koç, Nurşen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrogen storage characteristics of Ti2Ni alloy synthesized by the electro-deoxidation technique</atitle><jtitle>Intermetallics</jtitle><date>2014-03-01</date><risdate>2014</risdate><volume>46</volume><spage>51</spage><epage>55</epage><pages>51-55</pages><issn>0966-9795</issn><abstract>Ti2Ni alloy was synthesized in the molten CaCl2 electrolyte by the electro-deoxidation method at 900 °C and the electrochemical hydrogen storage characteristics of the synthesized alloy was observed. The X-ray diffraction peaks indicated that stoichiometric oxides in TiO2–ZrO2–NiO mixture reduced to Ti3O5, CaTiO3, CaZrO3, Ni and Ti2O3 within 5 h electro-deoxidation process. Extension of the electro-deoxidation time to 10 h caused formations of TiO and equilibrium Ti2Ni phase. After 24 h electro-deoxidation the target alloy with the equilibrium Ti2Ni phase structure and the maximum amount of the dissolved Zr in it was obtained. It was observed that the synthesized alloy had maximum discharge capacity of 200 mA h g−1. Upon increase in the charge/discharge cycles, however, the discharge capacity decayed sharply. According to the gathered EIS data at various DODs, the rapid degradation in the electrode performance of Ti2Ni alloy was attributed to the developed barrier oxide layer on the electrode surface. •Ti2Ni alloy was synthesized by the electro-deoxidation method at 900 °C.•Ti3O5, CaTiO3, CaZrO3, Ni and Ti2O3 were reduction products after 5 h deoxidation.•Ti2Ni phase formed after 10 h deoxidation and Zr dissolved in this phase.•The maximum discharge capacity of the synthesized alloy was 200 mA h g−1.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.intermet.2013.10.026</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-0166-7862</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0966-9795
ispartof Intermetallics, 2014-03, Vol.46, p.51-55
issn 0966-9795
language eng
recordid cdi_proquest_miscellaneous_1530988607
source Elsevier ScienceDirect Journals Complete
subjects A. Ternary alloy systems
Alloy development
B. Hydrogen storage
C. Reaction synthesis
Charge
Discharge
Electrochemical impedance spectroscopy
Electrodes
F. Diffraction
F. Electrochemical characterization
G. Energy systems
Hydrogen storage
Oxides
Titanium dioxide
title Hydrogen storage characteristics of Ti2Ni alloy synthesized by the electro-deoxidation technique
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T15%3A47%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrogen%20storage%20characteristics%20of%20Ti2Ni%20alloy%20synthesized%20by%20the%20electro-deoxidation%20technique&rft.jtitle=Intermetallics&rft.au=Anik,%20Mustafa&rft.date=2014-03-01&rft.volume=46&rft.spage=51&rft.epage=55&rft.pages=51-55&rft.issn=0966-9795&rft_id=info:doi/10.1016/j.intermet.2013.10.026&rft_dat=%3Cproquest_cross%3E1530988607%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1530988607&rft_id=info:pmid/&rft_els_id=S0966979513002896&rfr_iscdi=true