Hydrogen storage characteristics of Ti2Ni alloy synthesized by the electro-deoxidation technique
Ti2Ni alloy was synthesized in the molten CaCl2 electrolyte by the electro-deoxidation method at 900 °C and the electrochemical hydrogen storage characteristics of the synthesized alloy was observed. The X-ray diffraction peaks indicated that stoichiometric oxides in TiO2–ZrO2–NiO mixture reduced to...
Gespeichert in:
Veröffentlicht in: | Intermetallics 2014-03, Vol.46, p.51-55 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 55 |
---|---|
container_issue | |
container_start_page | 51 |
container_title | Intermetallics |
container_volume | 46 |
creator | Anik, Mustafa Baksan, Bedri Orbay, Tuğba Ölçer Küçükdeveci, Nilüfer Aybar, Alanur Binal Özden, Reşat Can Gaşan, Hakan Koç, Nurşen |
description | Ti2Ni alloy was synthesized in the molten CaCl2 electrolyte by the electro-deoxidation method at 900 °C and the electrochemical hydrogen storage characteristics of the synthesized alloy was observed. The X-ray diffraction peaks indicated that stoichiometric oxides in TiO2–ZrO2–NiO mixture reduced to Ti3O5, CaTiO3, CaZrO3, Ni and Ti2O3 within 5 h electro-deoxidation process. Extension of the electro-deoxidation time to 10 h caused formations of TiO and equilibrium Ti2Ni phase. After 24 h electro-deoxidation the target alloy with the equilibrium Ti2Ni phase structure and the maximum amount of the dissolved Zr in it was obtained. It was observed that the synthesized alloy had maximum discharge capacity of 200 mA h g−1. Upon increase in the charge/discharge cycles, however, the discharge capacity decayed sharply. According to the gathered EIS data at various DODs, the rapid degradation in the electrode performance of Ti2Ni alloy was attributed to the developed barrier oxide layer on the electrode surface.
•Ti2Ni alloy was synthesized by the electro-deoxidation method at 900 °C.•Ti3O5, CaTiO3, CaZrO3, Ni and Ti2O3 were reduction products after 5 h deoxidation.•Ti2Ni phase formed after 10 h deoxidation and Zr dissolved in this phase.•The maximum discharge capacity of the synthesized alloy was 200 mA h g−1. |
doi_str_mv | 10.1016/j.intermet.2013.10.026 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1530988607</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0966979513002896</els_id><sourcerecordid>1530988607</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-1fa5e0205815cf80e3eb5da4ac5173aeab1beff90c40f96f238a47ea22b27bd83</originalsourceid><addsrcrecordid>eNqFkDtPAzEQhF2ARHj8BeSS5oIf53t0oAgIUgRNqI3PXieOLudgO4jj1-MoUFPtajQzq_0QuqZkSgmtbjdTNyQIW0hTRijP4pSw6gRNSFtVRVu34gydx7ghhNaEiwl6n48m-BUMOCYf1AqwXqugdC5xMTkdsbd46diLw6rv_YjjOKQ1RPcNBncjzjuGHnQKvjDgv5xRyfkBJ9DrwX3s4RKdWtVHuPqdF-jt8WE5mxeL16fn2f2i0LwUqaBWCSCMiIYKbRsCHDphVKm0oDVXoDragbUt0SWxbWUZb1RZg2KsY3VnGn6Bbo69u-Dz2Zjk1kUNfa8G8PsoqeCkbZqK1NlaHa06-BgDWLkLbqvCKCmRB4xyI_8wygPGg54x5uDdMQj5kU8HQUbtYNBgXMgIpPHuv4of89iEKQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1530988607</pqid></control><display><type>article</type><title>Hydrogen storage characteristics of Ti2Ni alloy synthesized by the electro-deoxidation technique</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Anik, Mustafa ; Baksan, Bedri ; Orbay, Tuğba Ölçer ; Küçükdeveci, Nilüfer ; Aybar, Alanur Binal ; Özden, Reşat Can ; Gaşan, Hakan ; Koç, Nurşen</creator><creatorcontrib>Anik, Mustafa ; Baksan, Bedri ; Orbay, Tuğba Ölçer ; Küçükdeveci, Nilüfer ; Aybar, Alanur Binal ; Özden, Reşat Can ; Gaşan, Hakan ; Koç, Nurşen</creatorcontrib><description>Ti2Ni alloy was synthesized in the molten CaCl2 electrolyte by the electro-deoxidation method at 900 °C and the electrochemical hydrogen storage characteristics of the synthesized alloy was observed. The X-ray diffraction peaks indicated that stoichiometric oxides in TiO2–ZrO2–NiO mixture reduced to Ti3O5, CaTiO3, CaZrO3, Ni and Ti2O3 within 5 h electro-deoxidation process. Extension of the electro-deoxidation time to 10 h caused formations of TiO and equilibrium Ti2Ni phase. After 24 h electro-deoxidation the target alloy with the equilibrium Ti2Ni phase structure and the maximum amount of the dissolved Zr in it was obtained. It was observed that the synthesized alloy had maximum discharge capacity of 200 mA h g−1. Upon increase in the charge/discharge cycles, however, the discharge capacity decayed sharply. According to the gathered EIS data at various DODs, the rapid degradation in the electrode performance of Ti2Ni alloy was attributed to the developed barrier oxide layer on the electrode surface.
•Ti2Ni alloy was synthesized by the electro-deoxidation method at 900 °C.•Ti3O5, CaTiO3, CaZrO3, Ni and Ti2O3 were reduction products after 5 h deoxidation.•Ti2Ni phase formed after 10 h deoxidation and Zr dissolved in this phase.•The maximum discharge capacity of the synthesized alloy was 200 mA h g−1.</description><identifier>ISSN: 0966-9795</identifier><identifier>DOI: 10.1016/j.intermet.2013.10.026</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>A. Ternary alloy systems ; Alloy development ; B. Hydrogen storage ; C. Reaction synthesis ; Charge ; Discharge ; Electrochemical impedance spectroscopy ; Electrodes ; F. Diffraction ; F. Electrochemical characterization ; G. Energy systems ; Hydrogen storage ; Oxides ; Titanium dioxide</subject><ispartof>Intermetallics, 2014-03, Vol.46, p.51-55</ispartof><rights>2013 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c345t-1fa5e0205815cf80e3eb5da4ac5173aeab1beff90c40f96f238a47ea22b27bd83</citedby><cites>FETCH-LOGICAL-c345t-1fa5e0205815cf80e3eb5da4ac5173aeab1beff90c40f96f238a47ea22b27bd83</cites><orcidid>0000-0003-0166-7862</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0966979513002896$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Anik, Mustafa</creatorcontrib><creatorcontrib>Baksan, Bedri</creatorcontrib><creatorcontrib>Orbay, Tuğba Ölçer</creatorcontrib><creatorcontrib>Küçükdeveci, Nilüfer</creatorcontrib><creatorcontrib>Aybar, Alanur Binal</creatorcontrib><creatorcontrib>Özden, Reşat Can</creatorcontrib><creatorcontrib>Gaşan, Hakan</creatorcontrib><creatorcontrib>Koç, Nurşen</creatorcontrib><title>Hydrogen storage characteristics of Ti2Ni alloy synthesized by the electro-deoxidation technique</title><title>Intermetallics</title><description>Ti2Ni alloy was synthesized in the molten CaCl2 electrolyte by the electro-deoxidation method at 900 °C and the electrochemical hydrogen storage characteristics of the synthesized alloy was observed. The X-ray diffraction peaks indicated that stoichiometric oxides in TiO2–ZrO2–NiO mixture reduced to Ti3O5, CaTiO3, CaZrO3, Ni and Ti2O3 within 5 h electro-deoxidation process. Extension of the electro-deoxidation time to 10 h caused formations of TiO and equilibrium Ti2Ni phase. After 24 h electro-deoxidation the target alloy with the equilibrium Ti2Ni phase structure and the maximum amount of the dissolved Zr in it was obtained. It was observed that the synthesized alloy had maximum discharge capacity of 200 mA h g−1. Upon increase in the charge/discharge cycles, however, the discharge capacity decayed sharply. According to the gathered EIS data at various DODs, the rapid degradation in the electrode performance of Ti2Ni alloy was attributed to the developed barrier oxide layer on the electrode surface.
•Ti2Ni alloy was synthesized by the electro-deoxidation method at 900 °C.•Ti3O5, CaTiO3, CaZrO3, Ni and Ti2O3 were reduction products after 5 h deoxidation.•Ti2Ni phase formed after 10 h deoxidation and Zr dissolved in this phase.•The maximum discharge capacity of the synthesized alloy was 200 mA h g−1.</description><subject>A. Ternary alloy systems</subject><subject>Alloy development</subject><subject>B. Hydrogen storage</subject><subject>C. Reaction synthesis</subject><subject>Charge</subject><subject>Discharge</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Electrodes</subject><subject>F. Diffraction</subject><subject>F. Electrochemical characterization</subject><subject>G. Energy systems</subject><subject>Hydrogen storage</subject><subject>Oxides</subject><subject>Titanium dioxide</subject><issn>0966-9795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkDtPAzEQhF2ARHj8BeSS5oIf53t0oAgIUgRNqI3PXieOLudgO4jj1-MoUFPtajQzq_0QuqZkSgmtbjdTNyQIW0hTRijP4pSw6gRNSFtVRVu34gydx7ghhNaEiwl6n48m-BUMOCYf1AqwXqugdC5xMTkdsbd46diLw6rv_YjjOKQ1RPcNBncjzjuGHnQKvjDgv5xRyfkBJ9DrwX3s4RKdWtVHuPqdF-jt8WE5mxeL16fn2f2i0LwUqaBWCSCMiIYKbRsCHDphVKm0oDVXoDragbUt0SWxbWUZb1RZg2KsY3VnGn6Bbo69u-Dz2Zjk1kUNfa8G8PsoqeCkbZqK1NlaHa06-BgDWLkLbqvCKCmRB4xyI_8wygPGg54x5uDdMQj5kU8HQUbtYNBgXMgIpPHuv4of89iEKQ</recordid><startdate>20140301</startdate><enddate>20140301</enddate><creator>Anik, Mustafa</creator><creator>Baksan, Bedri</creator><creator>Orbay, Tuğba Ölçer</creator><creator>Küçükdeveci, Nilüfer</creator><creator>Aybar, Alanur Binal</creator><creator>Özden, Reşat Can</creator><creator>Gaşan, Hakan</creator><creator>Koç, Nurşen</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-0166-7862</orcidid></search><sort><creationdate>20140301</creationdate><title>Hydrogen storage characteristics of Ti2Ni alloy synthesized by the electro-deoxidation technique</title><author>Anik, Mustafa ; Baksan, Bedri ; Orbay, Tuğba Ölçer ; Küçükdeveci, Nilüfer ; Aybar, Alanur Binal ; Özden, Reşat Can ; Gaşan, Hakan ; Koç, Nurşen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-1fa5e0205815cf80e3eb5da4ac5173aeab1beff90c40f96f238a47ea22b27bd83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>A. Ternary alloy systems</topic><topic>Alloy development</topic><topic>B. Hydrogen storage</topic><topic>C. Reaction synthesis</topic><topic>Charge</topic><topic>Discharge</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Electrodes</topic><topic>F. Diffraction</topic><topic>F. Electrochemical characterization</topic><topic>G. Energy systems</topic><topic>Hydrogen storage</topic><topic>Oxides</topic><topic>Titanium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anik, Mustafa</creatorcontrib><creatorcontrib>Baksan, Bedri</creatorcontrib><creatorcontrib>Orbay, Tuğba Ölçer</creatorcontrib><creatorcontrib>Küçükdeveci, Nilüfer</creatorcontrib><creatorcontrib>Aybar, Alanur Binal</creatorcontrib><creatorcontrib>Özden, Reşat Can</creatorcontrib><creatorcontrib>Gaşan, Hakan</creatorcontrib><creatorcontrib>Koç, Nurşen</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>Intermetallics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anik, Mustafa</au><au>Baksan, Bedri</au><au>Orbay, Tuğba Ölçer</au><au>Küçükdeveci, Nilüfer</au><au>Aybar, Alanur Binal</au><au>Özden, Reşat Can</au><au>Gaşan, Hakan</au><au>Koç, Nurşen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrogen storage characteristics of Ti2Ni alloy synthesized by the electro-deoxidation technique</atitle><jtitle>Intermetallics</jtitle><date>2014-03-01</date><risdate>2014</risdate><volume>46</volume><spage>51</spage><epage>55</epage><pages>51-55</pages><issn>0966-9795</issn><abstract>Ti2Ni alloy was synthesized in the molten CaCl2 electrolyte by the electro-deoxidation method at 900 °C and the electrochemical hydrogen storage characteristics of the synthesized alloy was observed. The X-ray diffraction peaks indicated that stoichiometric oxides in TiO2–ZrO2–NiO mixture reduced to Ti3O5, CaTiO3, CaZrO3, Ni and Ti2O3 within 5 h electro-deoxidation process. Extension of the electro-deoxidation time to 10 h caused formations of TiO and equilibrium Ti2Ni phase. After 24 h electro-deoxidation the target alloy with the equilibrium Ti2Ni phase structure and the maximum amount of the dissolved Zr in it was obtained. It was observed that the synthesized alloy had maximum discharge capacity of 200 mA h g−1. Upon increase in the charge/discharge cycles, however, the discharge capacity decayed sharply. According to the gathered EIS data at various DODs, the rapid degradation in the electrode performance of Ti2Ni alloy was attributed to the developed barrier oxide layer on the electrode surface.
•Ti2Ni alloy was synthesized by the electro-deoxidation method at 900 °C.•Ti3O5, CaTiO3, CaZrO3, Ni and Ti2O3 were reduction products after 5 h deoxidation.•Ti2Ni phase formed after 10 h deoxidation and Zr dissolved in this phase.•The maximum discharge capacity of the synthesized alloy was 200 mA h g−1.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.intermet.2013.10.026</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-0166-7862</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0966-9795 |
ispartof | Intermetallics, 2014-03, Vol.46, p.51-55 |
issn | 0966-9795 |
language | eng |
recordid | cdi_proquest_miscellaneous_1530988607 |
source | Elsevier ScienceDirect Journals Complete |
subjects | A. Ternary alloy systems Alloy development B. Hydrogen storage C. Reaction synthesis Charge Discharge Electrochemical impedance spectroscopy Electrodes F. Diffraction F. Electrochemical characterization G. Energy systems Hydrogen storage Oxides Titanium dioxide |
title | Hydrogen storage characteristics of Ti2Ni alloy synthesized by the electro-deoxidation technique |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T15%3A47%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrogen%20storage%20characteristics%20of%20Ti2Ni%20alloy%20synthesized%20by%20the%20electro-deoxidation%20technique&rft.jtitle=Intermetallics&rft.au=Anik,%20Mustafa&rft.date=2014-03-01&rft.volume=46&rft.spage=51&rft.epage=55&rft.pages=51-55&rft.issn=0966-9795&rft_id=info:doi/10.1016/j.intermet.2013.10.026&rft_dat=%3Cproquest_cross%3E1530988607%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1530988607&rft_id=info:pmid/&rft_els_id=S0966979513002896&rfr_iscdi=true |