New classes of clustering coefficient locally maximizing graphs

A simple connected undirected graph G is called a clustering coefficient locally maximizing graph if its clustering coefficient is not less than that of any simple connected graph obtained from G by rewiring an edge, that is, removing an edge and adding a new edge. In this paper, we present some new...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete Applied Mathematics 2014-01, Vol.162, p.202-213
Hauptverfasser: Fukami, Tatsuya, Takahashi, Norikazu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 213
container_issue
container_start_page 202
container_title Discrete Applied Mathematics
container_volume 162
creator Fukami, Tatsuya
Takahashi, Norikazu
description A simple connected undirected graph G is called a clustering coefficient locally maximizing graph if its clustering coefficient is not less than that of any simple connected graph obtained from G by rewiring an edge, that is, removing an edge and adding a new edge. In this paper, we present some new classes of clustering coefficient locally maximizing graphs. We first show that any graph composed of multiple cliques with orders greater than two sharing one vertex is a clustering coefficient locally maximizing graph. We next show that any graph obtained from a tree by replacing edges with cliques with the same order other than four is a clustering coefficient locally maximizing graph. We also extend the latter result to a more general class.
doi_str_mv 10.1016/j.dam.2013.09.013
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1530983984</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0166218X13004137</els_id><sourcerecordid>1530983984</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-25430e04e595de317aebdf2e9b9d5588cc965a54cfdcdb98c98add396c380c353</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqXwANxy5JJgx3FiiwNCFX9SBReQuFnuel1cJU2xU6A8PY7KmdO3q51ZaYaQc0YLRll9uSqs6YqSMl5QVSQckAmTTZnXTcMOySRp6rxk8u2YnMS4opSytE3I9RN-ZdCaGDFmvUvjNg4Y_HqZQY_OefC4HrK2B9O2u6wz377zP-N5GczmPZ6SI2faiGd_nJLXu9uX2UM-f75_nN3Mc6i4GvJSVJwirVAoYZGzxuDCuhLVQlkhpARQtTCiAmfBLpQEJY21XNXAJQUu-JRc7P9uQv-xxTjozkfAtjVr7LdRM8GpklzJKknZXgqhjzGg05vgOxN2mlE9lqVXOpWlx7I0VTohea72HkwZPj0GHcfggNYHhEHb3v_j_gXJqHLI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1530983984</pqid></control><display><type>article</type><title>New classes of clustering coefficient locally maximizing graphs</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Fukami, Tatsuya ; Takahashi, Norikazu</creator><creatorcontrib>Fukami, Tatsuya ; Takahashi, Norikazu</creatorcontrib><description>A simple connected undirected graph G is called a clustering coefficient locally maximizing graph if its clustering coefficient is not less than that of any simple connected graph obtained from G by rewiring an edge, that is, removing an edge and adding a new edge. In this paper, we present some new classes of clustering coefficient locally maximizing graphs. We first show that any graph composed of multiple cliques with orders greater than two sharing one vertex is a clustering coefficient locally maximizing graph. We next show that any graph obtained from a tree by replacing edges with cliques with the same order other than four is a clustering coefficient locally maximizing graph. We also extend the latter result to a more general class.</description><identifier>ISSN: 0166-218X</identifier><identifier>EISSN: 1872-6771</identifier><identifier>DOI: 10.1016/j.dam.2013.09.013</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Clustering ; Clustering coefficient ; Coefficients ; Complex network ; Connected caveman graph ; Graphs ; Mathematical analysis ; Rewiring ; Trees</subject><ispartof>Discrete Applied Mathematics, 2014-01, Vol.162, p.202-213</ispartof><rights>2013 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c439t-25430e04e595de317aebdf2e9b9d5588cc965a54cfdcdb98c98add396c380c353</citedby><cites>FETCH-LOGICAL-c439t-25430e04e595de317aebdf2e9b9d5588cc965a54cfdcdb98c98add396c380c353</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0166218X13004137$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Fukami, Tatsuya</creatorcontrib><creatorcontrib>Takahashi, Norikazu</creatorcontrib><title>New classes of clustering coefficient locally maximizing graphs</title><title>Discrete Applied Mathematics</title><description>A simple connected undirected graph G is called a clustering coefficient locally maximizing graph if its clustering coefficient is not less than that of any simple connected graph obtained from G by rewiring an edge, that is, removing an edge and adding a new edge. In this paper, we present some new classes of clustering coefficient locally maximizing graphs. We first show that any graph composed of multiple cliques with orders greater than two sharing one vertex is a clustering coefficient locally maximizing graph. We next show that any graph obtained from a tree by replacing edges with cliques with the same order other than four is a clustering coefficient locally maximizing graph. We also extend the latter result to a more general class.</description><subject>Clustering</subject><subject>Clustering coefficient</subject><subject>Coefficients</subject><subject>Complex network</subject><subject>Connected caveman graph</subject><subject>Graphs</subject><subject>Mathematical analysis</subject><subject>Rewiring</subject><subject>Trees</subject><issn>0166-218X</issn><issn>1872-6771</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EEqXwANxy5JJgx3FiiwNCFX9SBReQuFnuel1cJU2xU6A8PY7KmdO3q51ZaYaQc0YLRll9uSqs6YqSMl5QVSQckAmTTZnXTcMOySRp6rxk8u2YnMS4opSytE3I9RN-ZdCaGDFmvUvjNg4Y_HqZQY_OefC4HrK2B9O2u6wz377zP-N5GczmPZ6SI2faiGd_nJLXu9uX2UM-f75_nN3Mc6i4GvJSVJwirVAoYZGzxuDCuhLVQlkhpARQtTCiAmfBLpQEJY21XNXAJQUu-JRc7P9uQv-xxTjozkfAtjVr7LdRM8GpklzJKknZXgqhjzGg05vgOxN2mlE9lqVXOpWlx7I0VTohea72HkwZPj0GHcfggNYHhEHb3v_j_gXJqHLI</recordid><startdate>20140110</startdate><enddate>20140110</enddate><creator>Fukami, Tatsuya</creator><creator>Takahashi, Norikazu</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140110</creationdate><title>New classes of clustering coefficient locally maximizing graphs</title><author>Fukami, Tatsuya ; Takahashi, Norikazu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-25430e04e595de317aebdf2e9b9d5588cc965a54cfdcdb98c98add396c380c353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Clustering</topic><topic>Clustering coefficient</topic><topic>Coefficients</topic><topic>Complex network</topic><topic>Connected caveman graph</topic><topic>Graphs</topic><topic>Mathematical analysis</topic><topic>Rewiring</topic><topic>Trees</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fukami, Tatsuya</creatorcontrib><creatorcontrib>Takahashi, Norikazu</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Discrete Applied Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fukami, Tatsuya</au><au>Takahashi, Norikazu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New classes of clustering coefficient locally maximizing graphs</atitle><jtitle>Discrete Applied Mathematics</jtitle><date>2014-01-10</date><risdate>2014</risdate><volume>162</volume><spage>202</spage><epage>213</epage><pages>202-213</pages><issn>0166-218X</issn><eissn>1872-6771</eissn><abstract>A simple connected undirected graph G is called a clustering coefficient locally maximizing graph if its clustering coefficient is not less than that of any simple connected graph obtained from G by rewiring an edge, that is, removing an edge and adding a new edge. In this paper, we present some new classes of clustering coefficient locally maximizing graphs. We first show that any graph composed of multiple cliques with orders greater than two sharing one vertex is a clustering coefficient locally maximizing graph. We next show that any graph obtained from a tree by replacing edges with cliques with the same order other than four is a clustering coefficient locally maximizing graph. We also extend the latter result to a more general class.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.dam.2013.09.013</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0166-218X
ispartof Discrete Applied Mathematics, 2014-01, Vol.162, p.202-213
issn 0166-218X
1872-6771
language eng
recordid cdi_proquest_miscellaneous_1530983984
source Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Clustering
Clustering coefficient
Coefficients
Complex network
Connected caveman graph
Graphs
Mathematical analysis
Rewiring
Trees
title New classes of clustering coefficient locally maximizing graphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T07%3A41%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20classes%20of%20clustering%20coefficient%20locally%20maximizing%20graphs&rft.jtitle=Discrete%20Applied%20Mathematics&rft.au=Fukami,%20Tatsuya&rft.date=2014-01-10&rft.volume=162&rft.spage=202&rft.epage=213&rft.pages=202-213&rft.issn=0166-218X&rft.eissn=1872-6771&rft_id=info:doi/10.1016/j.dam.2013.09.013&rft_dat=%3Cproquest_cross%3E1530983984%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1530983984&rft_id=info:pmid/&rft_els_id=S0166218X13004137&rfr_iscdi=true