New classes of clustering coefficient locally maximizing graphs
A simple connected undirected graph G is called a clustering coefficient locally maximizing graph if its clustering coefficient is not less than that of any simple connected graph obtained from G by rewiring an edge, that is, removing an edge and adding a new edge. In this paper, we present some new...
Gespeichert in:
Veröffentlicht in: | Discrete Applied Mathematics 2014-01, Vol.162, p.202-213 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 213 |
---|---|
container_issue | |
container_start_page | 202 |
container_title | Discrete Applied Mathematics |
container_volume | 162 |
creator | Fukami, Tatsuya Takahashi, Norikazu |
description | A simple connected undirected graph G is called a clustering coefficient locally maximizing graph if its clustering coefficient is not less than that of any simple connected graph obtained from G by rewiring an edge, that is, removing an edge and adding a new edge. In this paper, we present some new classes of clustering coefficient locally maximizing graphs. We first show that any graph composed of multiple cliques with orders greater than two sharing one vertex is a clustering coefficient locally maximizing graph. We next show that any graph obtained from a tree by replacing edges with cliques with the same order other than four is a clustering coefficient locally maximizing graph. We also extend the latter result to a more general class. |
doi_str_mv | 10.1016/j.dam.2013.09.013 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1530983984</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0166218X13004137</els_id><sourcerecordid>1530983984</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-25430e04e595de317aebdf2e9b9d5588cc965a54cfdcdb98c98add396c380c353</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqXwANxy5JJgx3FiiwNCFX9SBReQuFnuel1cJU2xU6A8PY7KmdO3q51ZaYaQc0YLRll9uSqs6YqSMl5QVSQckAmTTZnXTcMOySRp6rxk8u2YnMS4opSytE3I9RN-ZdCaGDFmvUvjNg4Y_HqZQY_OefC4HrK2B9O2u6wz377zP-N5GczmPZ6SI2faiGd_nJLXu9uX2UM-f75_nN3Mc6i4GvJSVJwirVAoYZGzxuDCuhLVQlkhpARQtTCiAmfBLpQEJY21XNXAJQUu-JRc7P9uQv-xxTjozkfAtjVr7LdRM8GpklzJKknZXgqhjzGg05vgOxN2mlE9lqVXOpWlx7I0VTohea72HkwZPj0GHcfggNYHhEHb3v_j_gXJqHLI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1530983984</pqid></control><display><type>article</type><title>New classes of clustering coefficient locally maximizing graphs</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Fukami, Tatsuya ; Takahashi, Norikazu</creator><creatorcontrib>Fukami, Tatsuya ; Takahashi, Norikazu</creatorcontrib><description>A simple connected undirected graph G is called a clustering coefficient locally maximizing graph if its clustering coefficient is not less than that of any simple connected graph obtained from G by rewiring an edge, that is, removing an edge and adding a new edge. In this paper, we present some new classes of clustering coefficient locally maximizing graphs. We first show that any graph composed of multiple cliques with orders greater than two sharing one vertex is a clustering coefficient locally maximizing graph. We next show that any graph obtained from a tree by replacing edges with cliques with the same order other than four is a clustering coefficient locally maximizing graph. We also extend the latter result to a more general class.</description><identifier>ISSN: 0166-218X</identifier><identifier>EISSN: 1872-6771</identifier><identifier>DOI: 10.1016/j.dam.2013.09.013</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Clustering ; Clustering coefficient ; Coefficients ; Complex network ; Connected caveman graph ; Graphs ; Mathematical analysis ; Rewiring ; Trees</subject><ispartof>Discrete Applied Mathematics, 2014-01, Vol.162, p.202-213</ispartof><rights>2013 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c439t-25430e04e595de317aebdf2e9b9d5588cc965a54cfdcdb98c98add396c380c353</citedby><cites>FETCH-LOGICAL-c439t-25430e04e595de317aebdf2e9b9d5588cc965a54cfdcdb98c98add396c380c353</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0166218X13004137$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Fukami, Tatsuya</creatorcontrib><creatorcontrib>Takahashi, Norikazu</creatorcontrib><title>New classes of clustering coefficient locally maximizing graphs</title><title>Discrete Applied Mathematics</title><description>A simple connected undirected graph G is called a clustering coefficient locally maximizing graph if its clustering coefficient is not less than that of any simple connected graph obtained from G by rewiring an edge, that is, removing an edge and adding a new edge. In this paper, we present some new classes of clustering coefficient locally maximizing graphs. We first show that any graph composed of multiple cliques with orders greater than two sharing one vertex is a clustering coefficient locally maximizing graph. We next show that any graph obtained from a tree by replacing edges with cliques with the same order other than four is a clustering coefficient locally maximizing graph. We also extend the latter result to a more general class.</description><subject>Clustering</subject><subject>Clustering coefficient</subject><subject>Coefficients</subject><subject>Complex network</subject><subject>Connected caveman graph</subject><subject>Graphs</subject><subject>Mathematical analysis</subject><subject>Rewiring</subject><subject>Trees</subject><issn>0166-218X</issn><issn>1872-6771</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EEqXwANxy5JJgx3FiiwNCFX9SBReQuFnuel1cJU2xU6A8PY7KmdO3q51ZaYaQc0YLRll9uSqs6YqSMl5QVSQckAmTTZnXTcMOySRp6rxk8u2YnMS4opSytE3I9RN-ZdCaGDFmvUvjNg4Y_HqZQY_OefC4HrK2B9O2u6wz377zP-N5GczmPZ6SI2faiGd_nJLXu9uX2UM-f75_nN3Mc6i4GvJSVJwirVAoYZGzxuDCuhLVQlkhpARQtTCiAmfBLpQEJY21XNXAJQUu-JRc7P9uQv-xxTjozkfAtjVr7LdRM8GpklzJKknZXgqhjzGg05vgOxN2mlE9lqVXOpWlx7I0VTohea72HkwZPj0GHcfggNYHhEHb3v_j_gXJqHLI</recordid><startdate>20140110</startdate><enddate>20140110</enddate><creator>Fukami, Tatsuya</creator><creator>Takahashi, Norikazu</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140110</creationdate><title>New classes of clustering coefficient locally maximizing graphs</title><author>Fukami, Tatsuya ; Takahashi, Norikazu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-25430e04e595de317aebdf2e9b9d5588cc965a54cfdcdb98c98add396c380c353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Clustering</topic><topic>Clustering coefficient</topic><topic>Coefficients</topic><topic>Complex network</topic><topic>Connected caveman graph</topic><topic>Graphs</topic><topic>Mathematical analysis</topic><topic>Rewiring</topic><topic>Trees</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fukami, Tatsuya</creatorcontrib><creatorcontrib>Takahashi, Norikazu</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Discrete Applied Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fukami, Tatsuya</au><au>Takahashi, Norikazu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New classes of clustering coefficient locally maximizing graphs</atitle><jtitle>Discrete Applied Mathematics</jtitle><date>2014-01-10</date><risdate>2014</risdate><volume>162</volume><spage>202</spage><epage>213</epage><pages>202-213</pages><issn>0166-218X</issn><eissn>1872-6771</eissn><abstract>A simple connected undirected graph G is called a clustering coefficient locally maximizing graph if its clustering coefficient is not less than that of any simple connected graph obtained from G by rewiring an edge, that is, removing an edge and adding a new edge. In this paper, we present some new classes of clustering coefficient locally maximizing graphs. We first show that any graph composed of multiple cliques with orders greater than two sharing one vertex is a clustering coefficient locally maximizing graph. We next show that any graph obtained from a tree by replacing edges with cliques with the same order other than four is a clustering coefficient locally maximizing graph. We also extend the latter result to a more general class.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.dam.2013.09.013</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0166-218X |
ispartof | Discrete Applied Mathematics, 2014-01, Vol.162, p.202-213 |
issn | 0166-218X 1872-6771 |
language | eng |
recordid | cdi_proquest_miscellaneous_1530983984 |
source | Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Clustering Clustering coefficient Coefficients Complex network Connected caveman graph Graphs Mathematical analysis Rewiring Trees |
title | New classes of clustering coefficient locally maximizing graphs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T07%3A41%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20classes%20of%20clustering%20coefficient%20locally%20maximizing%20graphs&rft.jtitle=Discrete%20Applied%20Mathematics&rft.au=Fukami,%20Tatsuya&rft.date=2014-01-10&rft.volume=162&rft.spage=202&rft.epage=213&rft.pages=202-213&rft.issn=0166-218X&rft.eissn=1872-6771&rft_id=info:doi/10.1016/j.dam.2013.09.013&rft_dat=%3Cproquest_cross%3E1530983984%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1530983984&rft_id=info:pmid/&rft_els_id=S0166218X13004137&rfr_iscdi=true |