Classical theory of Runge–Kutta methods for Volterra functional differential equations

For solving Volterra functional differential equations (VFDEs), a class of discrete Runge–Kutta methods based on canonical interpolation is studied, which was first presented by the same author in a previous published paper, classical stability and convergence theories for this class of methods are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics and computation 2014-03, Vol.230, p.78-95
1. Verfasser: Shoufu, Li
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 95
container_issue
container_start_page 78
container_title Applied mathematics and computation
container_volume 230
creator Shoufu, Li
description For solving Volterra functional differential equations (VFDEs), a class of discrete Runge–Kutta methods based on canonical interpolation is studied, which was first presented by the same author in a previous published paper, classical stability and convergence theories for this class of methods are established. The methods studied and the theories established in this paper can be directly applied to non-stiff non-linear initial value problems in delay differential equations (DDEs), integro-differential equations (IDEs), delay integro-differential equations (DIDEs), and VFDEs of other type which appear in practice, and can be used as a necessary basis for the study of splitting methods for complex nonlinear stiff VFDEs.
doi_str_mv 10.1016/j.amc.2013.12.090
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1530982846</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0096300313013805</els_id><sourcerecordid>1530982846</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-a19ec835d32d73798fd70f8fa9a1752b7088f5edc65ca82a7e0011d50122e1293</originalsourceid><addsrcrecordid>eNp9kM9KJDEQh8OisOPoA3jro5duq5Lp7jSeZPDPorAgKnsLMak4GXo6mqSFufkO-4Y-yfYwnvdU_IrfV1AfY6cIFQI25-tKb0zFAUWFvIIOfrAZylaUdbPoDtgMoGtKASB-sqOU1gDQNriYsT_LXqfkje6LvKIQt0VwxcM4vNLX59-7MWddbCivgk2FC7F4Dn2mGHXhxsFkH4aJs945ijRkPwV6H_Vun47ZodN9opPvOWdP11ePy9vy_vfNr-XlfWmEgFxq7MhIUVvBbSvaTjrbgpNOdxrbmr-0IKWryZqmNlpy3RIAoq0BOSfknZizs_3dtxjeR0pZbXwy1Pd6oDAmhbWATnK5aKYq7qsmhpQiOfUW_UbHrUJQO4tqrSaLamdRIVeTxYm52DM0_fDhKapkPA2GrI9ksrLB_4f-B9PbfAY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1530982846</pqid></control><display><type>article</type><title>Classical theory of Runge–Kutta methods for Volterra functional differential equations</title><source>Elsevier ScienceDirect Journals</source><creator>Shoufu, Li</creator><creatorcontrib>Shoufu, Li</creatorcontrib><description>For solving Volterra functional differential equations (VFDEs), a class of discrete Runge–Kutta methods based on canonical interpolation is studied, which was first presented by the same author in a previous published paper, classical stability and convergence theories for this class of methods are established. The methods studied and the theories established in this paper can be directly applied to non-stiff non-linear initial value problems in delay differential equations (DDEs), integro-differential equations (IDEs), delay integro-differential equations (DIDEs), and VFDEs of other type which appear in practice, and can be used as a necessary basis for the study of splitting methods for complex nonlinear stiff VFDEs.</description><identifier>ISSN: 0096-3003</identifier><identifier>EISSN: 1873-5649</identifier><identifier>DOI: 10.1016/j.amc.2013.12.090</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Canonical interpolation operator ; Convergence ; Delay ; Differential equations ; Initial value problems ; Interpolation ; Mathematical analysis ; Non-stiff non-linear initial value problems ; Nonlinearity ; Numerical stability ; Runge-Kutta method ; Runge–Kutta methods ; Volterra functional differential equations</subject><ispartof>Applied mathematics and computation, 2014-03, Vol.230, p.78-95</ispartof><rights>2013 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-a19ec835d32d73798fd70f8fa9a1752b7088f5edc65ca82a7e0011d50122e1293</citedby><cites>FETCH-LOGICAL-c330t-a19ec835d32d73798fd70f8fa9a1752b7088f5edc65ca82a7e0011d50122e1293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0096300313013805$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Shoufu, Li</creatorcontrib><title>Classical theory of Runge–Kutta methods for Volterra functional differential equations</title><title>Applied mathematics and computation</title><description>For solving Volterra functional differential equations (VFDEs), a class of discrete Runge–Kutta methods based on canonical interpolation is studied, which was first presented by the same author in a previous published paper, classical stability and convergence theories for this class of methods are established. The methods studied and the theories established in this paper can be directly applied to non-stiff non-linear initial value problems in delay differential equations (DDEs), integro-differential equations (IDEs), delay integro-differential equations (DIDEs), and VFDEs of other type which appear in practice, and can be used as a necessary basis for the study of splitting methods for complex nonlinear stiff VFDEs.</description><subject>Canonical interpolation operator</subject><subject>Convergence</subject><subject>Delay</subject><subject>Differential equations</subject><subject>Initial value problems</subject><subject>Interpolation</subject><subject>Mathematical analysis</subject><subject>Non-stiff non-linear initial value problems</subject><subject>Nonlinearity</subject><subject>Numerical stability</subject><subject>Runge-Kutta method</subject><subject>Runge–Kutta methods</subject><subject>Volterra functional differential equations</subject><issn>0096-3003</issn><issn>1873-5649</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kM9KJDEQh8OisOPoA3jro5duq5Lp7jSeZPDPorAgKnsLMak4GXo6mqSFufkO-4Y-yfYwnvdU_IrfV1AfY6cIFQI25-tKb0zFAUWFvIIOfrAZylaUdbPoDtgMoGtKASB-sqOU1gDQNriYsT_LXqfkje6LvKIQt0VwxcM4vNLX59-7MWddbCivgk2FC7F4Dn2mGHXhxsFkH4aJs945ijRkPwV6H_Vun47ZodN9opPvOWdP11ePy9vy_vfNr-XlfWmEgFxq7MhIUVvBbSvaTjrbgpNOdxrbmr-0IKWryZqmNlpy3RIAoq0BOSfknZizs_3dtxjeR0pZbXwy1Pd6oDAmhbWATnK5aKYq7qsmhpQiOfUW_UbHrUJQO4tqrSaLamdRIVeTxYm52DM0_fDhKapkPA2GrI9ksrLB_4f-B9PbfAY</recordid><startdate>20140301</startdate><enddate>20140301</enddate><creator>Shoufu, Li</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140301</creationdate><title>Classical theory of Runge–Kutta methods for Volterra functional differential equations</title><author>Shoufu, Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-a19ec835d32d73798fd70f8fa9a1752b7088f5edc65ca82a7e0011d50122e1293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Canonical interpolation operator</topic><topic>Convergence</topic><topic>Delay</topic><topic>Differential equations</topic><topic>Initial value problems</topic><topic>Interpolation</topic><topic>Mathematical analysis</topic><topic>Non-stiff non-linear initial value problems</topic><topic>Nonlinearity</topic><topic>Numerical stability</topic><topic>Runge-Kutta method</topic><topic>Runge–Kutta methods</topic><topic>Volterra functional differential equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shoufu, Li</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied mathematics and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shoufu, Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Classical theory of Runge–Kutta methods for Volterra functional differential equations</atitle><jtitle>Applied mathematics and computation</jtitle><date>2014-03-01</date><risdate>2014</risdate><volume>230</volume><spage>78</spage><epage>95</epage><pages>78-95</pages><issn>0096-3003</issn><eissn>1873-5649</eissn><abstract>For solving Volterra functional differential equations (VFDEs), a class of discrete Runge–Kutta methods based on canonical interpolation is studied, which was first presented by the same author in a previous published paper, classical stability and convergence theories for this class of methods are established. The methods studied and the theories established in this paper can be directly applied to non-stiff non-linear initial value problems in delay differential equations (DDEs), integro-differential equations (IDEs), delay integro-differential equations (DIDEs), and VFDEs of other type which appear in practice, and can be used as a necessary basis for the study of splitting methods for complex nonlinear stiff VFDEs.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.amc.2013.12.090</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0096-3003
ispartof Applied mathematics and computation, 2014-03, Vol.230, p.78-95
issn 0096-3003
1873-5649
language eng
recordid cdi_proquest_miscellaneous_1530982846
source Elsevier ScienceDirect Journals
subjects Canonical interpolation operator
Convergence
Delay
Differential equations
Initial value problems
Interpolation
Mathematical analysis
Non-stiff non-linear initial value problems
Nonlinearity
Numerical stability
Runge-Kutta method
Runge–Kutta methods
Volterra functional differential equations
title Classical theory of Runge–Kutta methods for Volterra functional differential equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T08%3A42%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Classical%20theory%20of%20Runge%E2%80%93Kutta%20methods%20for%20Volterra%20functional%20differential%20equations&rft.jtitle=Applied%20mathematics%20and%20computation&rft.au=Shoufu,%20Li&rft.date=2014-03-01&rft.volume=230&rft.spage=78&rft.epage=95&rft.pages=78-95&rft.issn=0096-3003&rft.eissn=1873-5649&rft_id=info:doi/10.1016/j.amc.2013.12.090&rft_dat=%3Cproquest_cross%3E1530982846%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1530982846&rft_id=info:pmid/&rft_els_id=S0096300313013805&rfr_iscdi=true