A network-based data mining approach to portfolio selection via weighted clique relaxations
We introduce a new network-based data mining approach to selecting diversified portfolios by modeling the stock market as a network and utilizing combinatorial optimization techniques to find maximum-weight s -plexes in the obtained networks. The considered approach is based on the weighted market g...
Gespeichert in:
Veröffentlicht in: | Annals of operations research 2014-05, Vol.216 (1), p.23-34 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 34 |
---|---|
container_issue | 1 |
container_start_page | 23 |
container_title | Annals of operations research |
container_volume | 216 |
creator | Boginski, Vladimir Butenko, Sergiy Shirokikh, Oleg Trukhanov, Svyatoslav Gil Lafuente, Jaime |
description | We introduce a new network-based data mining approach to selecting diversified portfolios by modeling the stock market as a network and utilizing combinatorial optimization techniques to find maximum-weight
s
-plexes in the obtained networks. The considered approach is based on the
weighted market graph
model, which is used for identifying clusters of stocks according to a correlation-based criterion. The proposed techniques provide a new framework for selecting profitable diversified portfolios, which is verified by computational experiments on historical data over the past decade. In addition, the proposed approach can be used as a complementary tool for narrowing down a set of “candidate” stocks for a diversified portfolio, which can potentially be analyzed using other known portfolio selection techniques. |
doi_str_mv | 10.1007/s10479-013-1395-3 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1530978537</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A369550766</galeid><sourcerecordid>A369550766</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-eba16bba1f6117faa2568210feca01074a1a8dcc3300c0f0024dd5dcdf55953d3</originalsourceid><addsrcrecordid>eNp1kV1rFTEQhoNY8Nj6A7wLeOOFWyebzX5cHoofhYI39qoXYU4-tql7kmNm1-q_N8sp2IoSmMDkeYc38zL2WsC5AOjek4CmGyoQshJyUJV8xjZCdXU1SNk_ZxuoVVMpKeEFe0l0BwBC9GrDbrY8uvk-5W_VDslZbnFGvg8xxJHj4ZATmls-J35IefZpComTm5yZQ4r8R0B-78J4OxehmcL3xfHsJvyJ6zOdsROPE7lXD_cpu_744evF5-rqy6fLi-1VZRol58rtULS7UnwrROcRa9X2tQDvDIKArkGBvTWmmAcDHqBurFXWWK_UoKSVp-ztcW5xWyzQrPeBjJsmjC4tpIWSMHS9kl1B3_yF3qUlx-KuUGWRUvVd_4cacXI6RJ_mjGYdqreyHZSCrm0Ldf4Pqhzr9sGk6Hwo_SeCd48Eu4VCdFQKrRukEReip7g44iYnouy8PuSwx_xLC9Br6PoYui6h6zV0LYumPmqosHF0-dH__iv6DRa2rec</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1510035878</pqid></control><display><type>article</type><title>A network-based data mining approach to portfolio selection via weighted clique relaxations</title><source>Business Source Complete</source><source>SpringerLink Journals - AutoHoldings</source><creator>Boginski, Vladimir ; Butenko, Sergiy ; Shirokikh, Oleg ; Trukhanov, Svyatoslav ; Gil Lafuente, Jaime</creator><creatorcontrib>Boginski, Vladimir ; Butenko, Sergiy ; Shirokikh, Oleg ; Trukhanov, Svyatoslav ; Gil Lafuente, Jaime</creatorcontrib><description>We introduce a new network-based data mining approach to selecting diversified portfolios by modeling the stock market as a network and utilizing combinatorial optimization techniques to find maximum-weight
s
-plexes in the obtained networks. The considered approach is based on the
weighted market graph
model, which is used for identifying clusters of stocks according to a correlation-based criterion. The proposed techniques provide a new framework for selecting profitable diversified portfolios, which is verified by computational experiments on historical data over the past decade. In addition, the proposed approach can be used as a complementary tool for narrowing down a set of “candidate” stocks for a diversified portfolio, which can potentially be analyzed using other known portfolio selection techniques.</description><identifier>ISSN: 0254-5330</identifier><identifier>EISSN: 1572-9338</identifier><identifier>DOI: 10.1007/s10479-013-1395-3</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Algorithms ; Business and Management ; Combinatorial analysis ; Combinatorics ; Data mining ; Markets ; Methods ; Networks ; Operations research ; Operations Research/Decision Theory ; Optimization ; Optimization techniques ; Portfolio management ; Raw materials ; Securities markets ; Stock exchanges ; Studies ; Systems engineering ; Theory of Computation ; Volatility</subject><ispartof>Annals of operations research, 2014-05, Vol.216 (1), p.23-34</ispartof><rights>Springer Science+Business Media New York 2013</rights><rights>COPYRIGHT 2014 Springer</rights><rights>Springer Science+Business Media New York 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c453t-eba16bba1f6117faa2568210feca01074a1a8dcc3300c0f0024dd5dcdf55953d3</citedby><cites>FETCH-LOGICAL-c453t-eba16bba1f6117faa2568210feca01074a1a8dcc3300c0f0024dd5dcdf55953d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10479-013-1395-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10479-013-1395-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Boginski, Vladimir</creatorcontrib><creatorcontrib>Butenko, Sergiy</creatorcontrib><creatorcontrib>Shirokikh, Oleg</creatorcontrib><creatorcontrib>Trukhanov, Svyatoslav</creatorcontrib><creatorcontrib>Gil Lafuente, Jaime</creatorcontrib><title>A network-based data mining approach to portfolio selection via weighted clique relaxations</title><title>Annals of operations research</title><addtitle>Ann Oper Res</addtitle><description>We introduce a new network-based data mining approach to selecting diversified portfolios by modeling the stock market as a network and utilizing combinatorial optimization techniques to find maximum-weight
s
-plexes in the obtained networks. The considered approach is based on the
weighted market graph
model, which is used for identifying clusters of stocks according to a correlation-based criterion. The proposed techniques provide a new framework for selecting profitable diversified portfolios, which is verified by computational experiments on historical data over the past decade. In addition, the proposed approach can be used as a complementary tool for narrowing down a set of “candidate” stocks for a diversified portfolio, which can potentially be analyzed using other known portfolio selection techniques.</description><subject>Algorithms</subject><subject>Business and Management</subject><subject>Combinatorial analysis</subject><subject>Combinatorics</subject><subject>Data mining</subject><subject>Markets</subject><subject>Methods</subject><subject>Networks</subject><subject>Operations research</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Optimization techniques</subject><subject>Portfolio management</subject><subject>Raw materials</subject><subject>Securities markets</subject><subject>Stock exchanges</subject><subject>Studies</subject><subject>Systems engineering</subject><subject>Theory of Computation</subject><subject>Volatility</subject><issn>0254-5330</issn><issn>1572-9338</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kV1rFTEQhoNY8Nj6A7wLeOOFWyebzX5cHoofhYI39qoXYU4-tql7kmNm1-q_N8sp2IoSmMDkeYc38zL2WsC5AOjek4CmGyoQshJyUJV8xjZCdXU1SNk_ZxuoVVMpKeEFe0l0BwBC9GrDbrY8uvk-5W_VDslZbnFGvg8xxJHj4ZATmls-J35IefZpComTm5yZQ4r8R0B-78J4OxehmcL3xfHsJvyJ6zOdsROPE7lXD_cpu_744evF5-rqy6fLi-1VZRol58rtULS7UnwrROcRa9X2tQDvDIKArkGBvTWmmAcDHqBurFXWWK_UoKSVp-ztcW5xWyzQrPeBjJsmjC4tpIWSMHS9kl1B3_yF3qUlx-KuUGWRUvVd_4cacXI6RJ_mjGYdqreyHZSCrm0Ldf4Pqhzr9sGk6Hwo_SeCd48Eu4VCdFQKrRukEReip7g44iYnouy8PuSwx_xLC9Br6PoYui6h6zV0LYumPmqosHF0-dH__iv6DRa2rec</recordid><startdate>20140501</startdate><enddate>20140501</enddate><creator>Boginski, Vladimir</creator><creator>Butenko, Sergiy</creator><creator>Shirokikh, Oleg</creator><creator>Trukhanov, Svyatoslav</creator><creator>Gil Lafuente, Jaime</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>3V.</scope><scope>7TA</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7SC</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140501</creationdate><title>A network-based data mining approach to portfolio selection via weighted clique relaxations</title><author>Boginski, Vladimir ; Butenko, Sergiy ; Shirokikh, Oleg ; Trukhanov, Svyatoslav ; Gil Lafuente, Jaime</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-eba16bba1f6117faa2568210feca01074a1a8dcc3300c0f0024dd5dcdf55953d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Business and Management</topic><topic>Combinatorial analysis</topic><topic>Combinatorics</topic><topic>Data mining</topic><topic>Markets</topic><topic>Methods</topic><topic>Networks</topic><topic>Operations research</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Optimization techniques</topic><topic>Portfolio management</topic><topic>Raw materials</topic><topic>Securities markets</topic><topic>Stock exchanges</topic><topic>Studies</topic><topic>Systems engineering</topic><topic>Theory of Computation</topic><topic>Volatility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boginski, Vladimir</creatorcontrib><creatorcontrib>Butenko, Sergiy</creatorcontrib><creatorcontrib>Shirokikh, Oleg</creatorcontrib><creatorcontrib>Trukhanov, Svyatoslav</creatorcontrib><creatorcontrib>Gil Lafuente, Jaime</creatorcontrib><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>ProQuest Central (Corporate)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Annals of operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boginski, Vladimir</au><au>Butenko, Sergiy</au><au>Shirokikh, Oleg</au><au>Trukhanov, Svyatoslav</au><au>Gil Lafuente, Jaime</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A network-based data mining approach to portfolio selection via weighted clique relaxations</atitle><jtitle>Annals of operations research</jtitle><stitle>Ann Oper Res</stitle><date>2014-05-01</date><risdate>2014</risdate><volume>216</volume><issue>1</issue><spage>23</spage><epage>34</epage><pages>23-34</pages><issn>0254-5330</issn><eissn>1572-9338</eissn><abstract>We introduce a new network-based data mining approach to selecting diversified portfolios by modeling the stock market as a network and utilizing combinatorial optimization techniques to find maximum-weight
s
-plexes in the obtained networks. The considered approach is based on the
weighted market graph
model, which is used for identifying clusters of stocks according to a correlation-based criterion. The proposed techniques provide a new framework for selecting profitable diversified portfolios, which is verified by computational experiments on historical data over the past decade. In addition, the proposed approach can be used as a complementary tool for narrowing down a set of “candidate” stocks for a diversified portfolio, which can potentially be analyzed using other known portfolio selection techniques.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10479-013-1395-3</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0254-5330 |
ispartof | Annals of operations research, 2014-05, Vol.216 (1), p.23-34 |
issn | 0254-5330 1572-9338 |
language | eng |
recordid | cdi_proquest_miscellaneous_1530978537 |
source | Business Source Complete; SpringerLink Journals - AutoHoldings |
subjects | Algorithms Business and Management Combinatorial analysis Combinatorics Data mining Markets Methods Networks Operations research Operations Research/Decision Theory Optimization Optimization techniques Portfolio management Raw materials Securities markets Stock exchanges Studies Systems engineering Theory of Computation Volatility |
title | A network-based data mining approach to portfolio selection via weighted clique relaxations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T05%3A07%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20network-based%20data%20mining%20approach%20to%20portfolio%20selection%20via%20weighted%20clique%20relaxations&rft.jtitle=Annals%20of%20operations%20research&rft.au=Boginski,%20Vladimir&rft.date=2014-05-01&rft.volume=216&rft.issue=1&rft.spage=23&rft.epage=34&rft.pages=23-34&rft.issn=0254-5330&rft.eissn=1572-9338&rft_id=info:doi/10.1007/s10479-013-1395-3&rft_dat=%3Cgale_proqu%3EA369550766%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1510035878&rft_id=info:pmid/&rft_galeid=A369550766&rfr_iscdi=true |