GRASP with evolutionary path-relinking for the capacitated arc routing problem

The Capacitated Arc Routing Problem (CARP) is a well-known NP-hard combinatorial optimization problem where, given an undirected graph, the objective is to find a minimum cost set of tours servicing a subset of required edges under vehicle capacity constraints. There are numerous applications for th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & operations research 2013-12, Vol.40 (12), p.3206-3217
Hauptverfasser: Luiz Usberti, Fábio, Morelato França, Paulo, França, André Luiz Morelato
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3217
container_issue 12
container_start_page 3206
container_title Computers & operations research
container_volume 40
creator Luiz Usberti, Fábio
Morelato França, Paulo
França, André Luiz Morelato
description The Capacitated Arc Routing Problem (CARP) is a well-known NP-hard combinatorial optimization problem where, given an undirected graph, the objective is to find a minimum cost set of tours servicing a subset of required edges under vehicle capacity constraints. There are numerous applications for the CARP, such as street sweeping, garbage collection, mail delivery, school bus routing, and meter reading. A Greedy Randomized Adaptive Search Procedure (GRASP) with Path-Relinking (PR) is proposed and compared with other successful CARP metaheuristics. Some features of this GRASP with PR are (i) reactive parameter tuning, where the parameter value is stochastically selected biased in favor of those values which historically produced the best solutions in average; (ii) a statistical filter, which discard initial solutions if they are unlikely to improve the incumbent best solution; (iii) infeasible local search, where high-quality solutions, though infeasible, are used to explore the feasible/infeasible boundaries of the solution space; (iv) evolutionary PR, a recent trend where the pool of elite solutions is progressively improved by successive relinking of pairs of elite solutions. Computational tests were conducted using a set of 81 instances, and results reveal that the GRASP is very competitive, achieving the best overall deviation from lower bounds and the highest number of best solutions found.
doi_str_mv 10.1016/j.cor.2011.10.014
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1530977892</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0305054811003029</els_id><sourcerecordid>1530977892</sourcerecordid><originalsourceid>FETCH-LOGICAL-c432t-f18bfc68ae5edbe8a9b6eb3444fd7be5ac422f802ca4ff8082a0c93695749fc03</originalsourceid><addsrcrecordid>eNp9kE9PxCAQxYnRxHX1A3hr4sVLK7S0pfG0MbqabNT4J_FGKB1cardUoGv89tKsJw_OZTLw3hv4IXRKcEIwKS7aRBqbpJiQMCeY0D00I6zM4rLI3_bRDGc4j3FO2SE6cq7FocqUzND98mnx_Bh9ab-OYGu60WvTC_sdDcKvYwud7j90_x4pYyO_hkiKQUjthYcmElZG1gRHuB-sqTvYHKMDJToHJ799jl5vrl-ubuPVw_LuarGKJc1SHyvCaiULJiCHpgYmqrqAOqOUqqasIReSpqliOJWCqtBZKrCssqLKS1opibM5Ot_lhr2fIzjPN9pJ6DrRgxkdJ3mGq7JkVRqkZ3-krRltH17HCaWkqApaTYFkp5LWOGdB8cHqTQDBCeYTYd7yQJhPhKejQDh4LnceCD_darDcSQ29hEZbkJ43Rv_j_gFQd4QB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1441696490</pqid></control><display><type>article</type><title>GRASP with evolutionary path-relinking for the capacitated arc routing problem</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Luiz Usberti, Fábio ; Morelato França, Paulo ; França, André Luiz Morelato</creator><creatorcontrib>Luiz Usberti, Fábio ; Morelato França, Paulo ; França, André Luiz Morelato</creatorcontrib><description>The Capacitated Arc Routing Problem (CARP) is a well-known NP-hard combinatorial optimization problem where, given an undirected graph, the objective is to find a minimum cost set of tours servicing a subset of required edges under vehicle capacity constraints. There are numerous applications for the CARP, such as street sweeping, garbage collection, mail delivery, school bus routing, and meter reading. A Greedy Randomized Adaptive Search Procedure (GRASP) with Path-Relinking (PR) is proposed and compared with other successful CARP metaheuristics. Some features of this GRASP with PR are (i) reactive parameter tuning, where the parameter value is stochastically selected biased in favor of those values which historically produced the best solutions in average; (ii) a statistical filter, which discard initial solutions if they are unlikely to improve the incumbent best solution; (iii) infeasible local search, where high-quality solutions, though infeasible, are used to explore the feasible/infeasible boundaries of the solution space; (iv) evolutionary PR, a recent trend where the pool of elite solutions is progressively improved by successive relinking of pairs of elite solutions. Computational tests were conducted using a set of 81 instances, and results reveal that the GRASP is very competitive, achieving the best overall deviation from lower bounds and the highest number of best solutions found.</description><identifier>ISSN: 0305-0548</identifier><identifier>EISSN: 1873-765X</identifier><identifier>EISSN: 0305-0548</identifier><identifier>DOI: 10.1016/j.cor.2011.10.014</identifier><identifier>CODEN: CMORAP</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Arc routing ; Buses (vehicles) ; Carp ; Combinatorial analysis ; Comparative analysis ; Deviation ; Evolutionary ; Evolutionary path-relinking ; Garbage collection ; GRASP filtering ; Heuristic ; Infeasible solution space search ; Mathematical models ; Metaheuristics ; Optimization techniques ; Reactive parameters ; Route optimization ; Searching ; Stochastic models ; Studies ; Transportation problem (Operations research)</subject><ispartof>Computers &amp; operations research, 2013-12, Vol.40 (12), p.3206-3217</ispartof><rights>2011 Elsevier Ltd</rights><rights>Copyright Pergamon Press Inc. Dec 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c432t-f18bfc68ae5edbe8a9b6eb3444fd7be5ac422f802ca4ff8082a0c93695749fc03</citedby><cites>FETCH-LOGICAL-c432t-f18bfc68ae5edbe8a9b6eb3444fd7be5ac422f802ca4ff8082a0c93695749fc03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cor.2011.10.014$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Luiz Usberti, Fábio</creatorcontrib><creatorcontrib>Morelato França, Paulo</creatorcontrib><creatorcontrib>França, André Luiz Morelato</creatorcontrib><title>GRASP with evolutionary path-relinking for the capacitated arc routing problem</title><title>Computers &amp; operations research</title><description>The Capacitated Arc Routing Problem (CARP) is a well-known NP-hard combinatorial optimization problem where, given an undirected graph, the objective is to find a minimum cost set of tours servicing a subset of required edges under vehicle capacity constraints. There are numerous applications for the CARP, such as street sweeping, garbage collection, mail delivery, school bus routing, and meter reading. A Greedy Randomized Adaptive Search Procedure (GRASP) with Path-Relinking (PR) is proposed and compared with other successful CARP metaheuristics. Some features of this GRASP with PR are (i) reactive parameter tuning, where the parameter value is stochastically selected biased in favor of those values which historically produced the best solutions in average; (ii) a statistical filter, which discard initial solutions if they are unlikely to improve the incumbent best solution; (iii) infeasible local search, where high-quality solutions, though infeasible, are used to explore the feasible/infeasible boundaries of the solution space; (iv) evolutionary PR, a recent trend where the pool of elite solutions is progressively improved by successive relinking of pairs of elite solutions. Computational tests were conducted using a set of 81 instances, and results reveal that the GRASP is very competitive, achieving the best overall deviation from lower bounds and the highest number of best solutions found.</description><subject>Arc routing</subject><subject>Buses (vehicles)</subject><subject>Carp</subject><subject>Combinatorial analysis</subject><subject>Comparative analysis</subject><subject>Deviation</subject><subject>Evolutionary</subject><subject>Evolutionary path-relinking</subject><subject>Garbage collection</subject><subject>GRASP filtering</subject><subject>Heuristic</subject><subject>Infeasible solution space search</subject><subject>Mathematical models</subject><subject>Metaheuristics</subject><subject>Optimization techniques</subject><subject>Reactive parameters</subject><subject>Route optimization</subject><subject>Searching</subject><subject>Stochastic models</subject><subject>Studies</subject><subject>Transportation problem (Operations research)</subject><issn>0305-0548</issn><issn>1873-765X</issn><issn>0305-0548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kE9PxCAQxYnRxHX1A3hr4sVLK7S0pfG0MbqabNT4J_FGKB1cardUoGv89tKsJw_OZTLw3hv4IXRKcEIwKS7aRBqbpJiQMCeY0D00I6zM4rLI3_bRDGc4j3FO2SE6cq7FocqUzND98mnx_Bh9ab-OYGu60WvTC_sdDcKvYwud7j90_x4pYyO_hkiKQUjthYcmElZG1gRHuB-sqTvYHKMDJToHJ799jl5vrl-ubuPVw_LuarGKJc1SHyvCaiULJiCHpgYmqrqAOqOUqqasIReSpqliOJWCqtBZKrCssqLKS1opibM5Ot_lhr2fIzjPN9pJ6DrRgxkdJ3mGq7JkVRqkZ3-krRltH17HCaWkqApaTYFkp5LWOGdB8cHqTQDBCeYTYd7yQJhPhKejQDh4LnceCD_darDcSQ29hEZbkJ43Rv_j_gFQd4QB</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Luiz Usberti, Fábio</creator><creator>Morelato França, Paulo</creator><creator>França, André Luiz Morelato</creator><general>Elsevier Ltd</general><general>Pergamon Press Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20131201</creationdate><title>GRASP with evolutionary path-relinking for the capacitated arc routing problem</title><author>Luiz Usberti, Fábio ; Morelato França, Paulo ; França, André Luiz Morelato</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c432t-f18bfc68ae5edbe8a9b6eb3444fd7be5ac422f802ca4ff8082a0c93695749fc03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Arc routing</topic><topic>Buses (vehicles)</topic><topic>Carp</topic><topic>Combinatorial analysis</topic><topic>Comparative analysis</topic><topic>Deviation</topic><topic>Evolutionary</topic><topic>Evolutionary path-relinking</topic><topic>Garbage collection</topic><topic>GRASP filtering</topic><topic>Heuristic</topic><topic>Infeasible solution space search</topic><topic>Mathematical models</topic><topic>Metaheuristics</topic><topic>Optimization techniques</topic><topic>Reactive parameters</topic><topic>Route optimization</topic><topic>Searching</topic><topic>Stochastic models</topic><topic>Studies</topic><topic>Transportation problem (Operations research)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luiz Usberti, Fábio</creatorcontrib><creatorcontrib>Morelato França, Paulo</creatorcontrib><creatorcontrib>França, André Luiz Morelato</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luiz Usberti, Fábio</au><au>Morelato França, Paulo</au><au>França, André Luiz Morelato</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GRASP with evolutionary path-relinking for the capacitated arc routing problem</atitle><jtitle>Computers &amp; operations research</jtitle><date>2013-12-01</date><risdate>2013</risdate><volume>40</volume><issue>12</issue><spage>3206</spage><epage>3217</epage><pages>3206-3217</pages><issn>0305-0548</issn><eissn>1873-765X</eissn><eissn>0305-0548</eissn><coden>CMORAP</coden><abstract>The Capacitated Arc Routing Problem (CARP) is a well-known NP-hard combinatorial optimization problem where, given an undirected graph, the objective is to find a minimum cost set of tours servicing a subset of required edges under vehicle capacity constraints. There are numerous applications for the CARP, such as street sweeping, garbage collection, mail delivery, school bus routing, and meter reading. A Greedy Randomized Adaptive Search Procedure (GRASP) with Path-Relinking (PR) is proposed and compared with other successful CARP metaheuristics. Some features of this GRASP with PR are (i) reactive parameter tuning, where the parameter value is stochastically selected biased in favor of those values which historically produced the best solutions in average; (ii) a statistical filter, which discard initial solutions if they are unlikely to improve the incumbent best solution; (iii) infeasible local search, where high-quality solutions, though infeasible, are used to explore the feasible/infeasible boundaries of the solution space; (iv) evolutionary PR, a recent trend where the pool of elite solutions is progressively improved by successive relinking of pairs of elite solutions. Computational tests were conducted using a set of 81 instances, and results reveal that the GRASP is very competitive, achieving the best overall deviation from lower bounds and the highest number of best solutions found.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.cor.2011.10.014</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0305-0548
ispartof Computers & operations research, 2013-12, Vol.40 (12), p.3206-3217
issn 0305-0548
1873-765X
0305-0548
language eng
recordid cdi_proquest_miscellaneous_1530977892
source Elsevier ScienceDirect Journals Complete
subjects Arc routing
Buses (vehicles)
Carp
Combinatorial analysis
Comparative analysis
Deviation
Evolutionary
Evolutionary path-relinking
Garbage collection
GRASP filtering
Heuristic
Infeasible solution space search
Mathematical models
Metaheuristics
Optimization techniques
Reactive parameters
Route optimization
Searching
Stochastic models
Studies
Transportation problem (Operations research)
title GRASP with evolutionary path-relinking for the capacitated arc routing problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T03%3A33%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GRASP%20with%20evolutionary%20path-relinking%20for%20the%20capacitated%20arc%20routing%20problem&rft.jtitle=Computers%20&%20operations%20research&rft.au=Luiz%20Usberti,%20F%C3%A1bio&rft.date=2013-12-01&rft.volume=40&rft.issue=12&rft.spage=3206&rft.epage=3217&rft.pages=3206-3217&rft.issn=0305-0548&rft.eissn=1873-765X&rft.coden=CMORAP&rft_id=info:doi/10.1016/j.cor.2011.10.014&rft_dat=%3Cproquest_cross%3E1530977892%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1441696490&rft_id=info:pmid/&rft_els_id=S0305054811003029&rfr_iscdi=true