GRASP with evolutionary path-relinking for the capacitated arc routing problem
The Capacitated Arc Routing Problem (CARP) is a well-known NP-hard combinatorial optimization problem where, given an undirected graph, the objective is to find a minimum cost set of tours servicing a subset of required edges under vehicle capacity constraints. There are numerous applications for th...
Gespeichert in:
Veröffentlicht in: | Computers & operations research 2013-12, Vol.40 (12), p.3206-3217 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3217 |
---|---|
container_issue | 12 |
container_start_page | 3206 |
container_title | Computers & operations research |
container_volume | 40 |
creator | Luiz Usberti, Fábio Morelato França, Paulo França, André Luiz Morelato |
description | The Capacitated Arc Routing Problem (CARP) is a well-known NP-hard combinatorial optimization problem where, given an undirected graph, the objective is to find a minimum cost set of tours servicing a subset of required edges under vehicle capacity constraints. There are numerous applications for the CARP, such as street sweeping, garbage collection, mail delivery, school bus routing, and meter reading. A Greedy Randomized Adaptive Search Procedure (GRASP) with Path-Relinking (PR) is proposed and compared with other successful CARP metaheuristics. Some features of this GRASP with PR are (i) reactive parameter tuning, where the parameter value is stochastically selected biased in favor of those values which historically produced the best solutions in average; (ii) a statistical filter, which discard initial solutions if they are unlikely to improve the incumbent best solution; (iii) infeasible local search, where high-quality solutions, though infeasible, are used to explore the feasible/infeasible boundaries of the solution space; (iv) evolutionary PR, a recent trend where the pool of elite solutions is progressively improved by successive relinking of pairs of elite solutions. Computational tests were conducted using a set of 81 instances, and results reveal that the GRASP is very competitive, achieving the best overall deviation from lower bounds and the highest number of best solutions found. |
doi_str_mv | 10.1016/j.cor.2011.10.014 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1530977892</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0305054811003029</els_id><sourcerecordid>1530977892</sourcerecordid><originalsourceid>FETCH-LOGICAL-c432t-f18bfc68ae5edbe8a9b6eb3444fd7be5ac422f802ca4ff8082a0c93695749fc03</originalsourceid><addsrcrecordid>eNp9kE9PxCAQxYnRxHX1A3hr4sVLK7S0pfG0MbqabNT4J_FGKB1cardUoGv89tKsJw_OZTLw3hv4IXRKcEIwKS7aRBqbpJiQMCeY0D00I6zM4rLI3_bRDGc4j3FO2SE6cq7FocqUzND98mnx_Bh9ab-OYGu60WvTC_sdDcKvYwud7j90_x4pYyO_hkiKQUjthYcmElZG1gRHuB-sqTvYHKMDJToHJ799jl5vrl-ubuPVw_LuarGKJc1SHyvCaiULJiCHpgYmqrqAOqOUqqasIReSpqliOJWCqtBZKrCssqLKS1opibM5Ot_lhr2fIzjPN9pJ6DrRgxkdJ3mGq7JkVRqkZ3-krRltH17HCaWkqApaTYFkp5LWOGdB8cHqTQDBCeYTYd7yQJhPhKejQDh4LnceCD_darDcSQ29hEZbkJ43Rv_j_gFQd4QB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1441696490</pqid></control><display><type>article</type><title>GRASP with evolutionary path-relinking for the capacitated arc routing problem</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Luiz Usberti, Fábio ; Morelato França, Paulo ; França, André Luiz Morelato</creator><creatorcontrib>Luiz Usberti, Fábio ; Morelato França, Paulo ; França, André Luiz Morelato</creatorcontrib><description>The Capacitated Arc Routing Problem (CARP) is a well-known NP-hard combinatorial optimization problem where, given an undirected graph, the objective is to find a minimum cost set of tours servicing a subset of required edges under vehicle capacity constraints. There are numerous applications for the CARP, such as street sweeping, garbage collection, mail delivery, school bus routing, and meter reading. A Greedy Randomized Adaptive Search Procedure (GRASP) with Path-Relinking (PR) is proposed and compared with other successful CARP metaheuristics. Some features of this GRASP with PR are (i) reactive parameter tuning, where the parameter value is stochastically selected biased in favor of those values which historically produced the best solutions in average; (ii) a statistical filter, which discard initial solutions if they are unlikely to improve the incumbent best solution; (iii) infeasible local search, where high-quality solutions, though infeasible, are used to explore the feasible/infeasible boundaries of the solution space; (iv) evolutionary PR, a recent trend where the pool of elite solutions is progressively improved by successive relinking of pairs of elite solutions. Computational tests were conducted using a set of 81 instances, and results reveal that the GRASP is very competitive, achieving the best overall deviation from lower bounds and the highest number of best solutions found.</description><identifier>ISSN: 0305-0548</identifier><identifier>EISSN: 1873-765X</identifier><identifier>EISSN: 0305-0548</identifier><identifier>DOI: 10.1016/j.cor.2011.10.014</identifier><identifier>CODEN: CMORAP</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Arc routing ; Buses (vehicles) ; Carp ; Combinatorial analysis ; Comparative analysis ; Deviation ; Evolutionary ; Evolutionary path-relinking ; Garbage collection ; GRASP filtering ; Heuristic ; Infeasible solution space search ; Mathematical models ; Metaheuristics ; Optimization techniques ; Reactive parameters ; Route optimization ; Searching ; Stochastic models ; Studies ; Transportation problem (Operations research)</subject><ispartof>Computers & operations research, 2013-12, Vol.40 (12), p.3206-3217</ispartof><rights>2011 Elsevier Ltd</rights><rights>Copyright Pergamon Press Inc. Dec 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c432t-f18bfc68ae5edbe8a9b6eb3444fd7be5ac422f802ca4ff8082a0c93695749fc03</citedby><cites>FETCH-LOGICAL-c432t-f18bfc68ae5edbe8a9b6eb3444fd7be5ac422f802ca4ff8082a0c93695749fc03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cor.2011.10.014$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Luiz Usberti, Fábio</creatorcontrib><creatorcontrib>Morelato França, Paulo</creatorcontrib><creatorcontrib>França, André Luiz Morelato</creatorcontrib><title>GRASP with evolutionary path-relinking for the capacitated arc routing problem</title><title>Computers & operations research</title><description>The Capacitated Arc Routing Problem (CARP) is a well-known NP-hard combinatorial optimization problem where, given an undirected graph, the objective is to find a minimum cost set of tours servicing a subset of required edges under vehicle capacity constraints. There are numerous applications for the CARP, such as street sweeping, garbage collection, mail delivery, school bus routing, and meter reading. A Greedy Randomized Adaptive Search Procedure (GRASP) with Path-Relinking (PR) is proposed and compared with other successful CARP metaheuristics. Some features of this GRASP with PR are (i) reactive parameter tuning, where the parameter value is stochastically selected biased in favor of those values which historically produced the best solutions in average; (ii) a statistical filter, which discard initial solutions if they are unlikely to improve the incumbent best solution; (iii) infeasible local search, where high-quality solutions, though infeasible, are used to explore the feasible/infeasible boundaries of the solution space; (iv) evolutionary PR, a recent trend where the pool of elite solutions is progressively improved by successive relinking of pairs of elite solutions. Computational tests were conducted using a set of 81 instances, and results reveal that the GRASP is very competitive, achieving the best overall deviation from lower bounds and the highest number of best solutions found.</description><subject>Arc routing</subject><subject>Buses (vehicles)</subject><subject>Carp</subject><subject>Combinatorial analysis</subject><subject>Comparative analysis</subject><subject>Deviation</subject><subject>Evolutionary</subject><subject>Evolutionary path-relinking</subject><subject>Garbage collection</subject><subject>GRASP filtering</subject><subject>Heuristic</subject><subject>Infeasible solution space search</subject><subject>Mathematical models</subject><subject>Metaheuristics</subject><subject>Optimization techniques</subject><subject>Reactive parameters</subject><subject>Route optimization</subject><subject>Searching</subject><subject>Stochastic models</subject><subject>Studies</subject><subject>Transportation problem (Operations research)</subject><issn>0305-0548</issn><issn>1873-765X</issn><issn>0305-0548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kE9PxCAQxYnRxHX1A3hr4sVLK7S0pfG0MbqabNT4J_FGKB1cardUoGv89tKsJw_OZTLw3hv4IXRKcEIwKS7aRBqbpJiQMCeY0D00I6zM4rLI3_bRDGc4j3FO2SE6cq7FocqUzND98mnx_Bh9ab-OYGu60WvTC_sdDcKvYwud7j90_x4pYyO_hkiKQUjthYcmElZG1gRHuB-sqTvYHKMDJToHJ799jl5vrl-ubuPVw_LuarGKJc1SHyvCaiULJiCHpgYmqrqAOqOUqqasIReSpqliOJWCqtBZKrCssqLKS1opibM5Ot_lhr2fIzjPN9pJ6DrRgxkdJ3mGq7JkVRqkZ3-krRltH17HCaWkqApaTYFkp5LWOGdB8cHqTQDBCeYTYd7yQJhPhKejQDh4LnceCD_darDcSQ29hEZbkJ43Rv_j_gFQd4QB</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Luiz Usberti, Fábio</creator><creator>Morelato França, Paulo</creator><creator>França, André Luiz Morelato</creator><general>Elsevier Ltd</general><general>Pergamon Press Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20131201</creationdate><title>GRASP with evolutionary path-relinking for the capacitated arc routing problem</title><author>Luiz Usberti, Fábio ; Morelato França, Paulo ; França, André Luiz Morelato</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c432t-f18bfc68ae5edbe8a9b6eb3444fd7be5ac422f802ca4ff8082a0c93695749fc03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Arc routing</topic><topic>Buses (vehicles)</topic><topic>Carp</topic><topic>Combinatorial analysis</topic><topic>Comparative analysis</topic><topic>Deviation</topic><topic>Evolutionary</topic><topic>Evolutionary path-relinking</topic><topic>Garbage collection</topic><topic>GRASP filtering</topic><topic>Heuristic</topic><topic>Infeasible solution space search</topic><topic>Mathematical models</topic><topic>Metaheuristics</topic><topic>Optimization techniques</topic><topic>Reactive parameters</topic><topic>Route optimization</topic><topic>Searching</topic><topic>Stochastic models</topic><topic>Studies</topic><topic>Transportation problem (Operations research)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luiz Usberti, Fábio</creatorcontrib><creatorcontrib>Morelato França, Paulo</creatorcontrib><creatorcontrib>França, André Luiz Morelato</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers & operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luiz Usberti, Fábio</au><au>Morelato França, Paulo</au><au>França, André Luiz Morelato</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GRASP with evolutionary path-relinking for the capacitated arc routing problem</atitle><jtitle>Computers & operations research</jtitle><date>2013-12-01</date><risdate>2013</risdate><volume>40</volume><issue>12</issue><spage>3206</spage><epage>3217</epage><pages>3206-3217</pages><issn>0305-0548</issn><eissn>1873-765X</eissn><eissn>0305-0548</eissn><coden>CMORAP</coden><abstract>The Capacitated Arc Routing Problem (CARP) is a well-known NP-hard combinatorial optimization problem where, given an undirected graph, the objective is to find a minimum cost set of tours servicing a subset of required edges under vehicle capacity constraints. There are numerous applications for the CARP, such as street sweeping, garbage collection, mail delivery, school bus routing, and meter reading. A Greedy Randomized Adaptive Search Procedure (GRASP) with Path-Relinking (PR) is proposed and compared with other successful CARP metaheuristics. Some features of this GRASP with PR are (i) reactive parameter tuning, where the parameter value is stochastically selected biased in favor of those values which historically produced the best solutions in average; (ii) a statistical filter, which discard initial solutions if they are unlikely to improve the incumbent best solution; (iii) infeasible local search, where high-quality solutions, though infeasible, are used to explore the feasible/infeasible boundaries of the solution space; (iv) evolutionary PR, a recent trend where the pool of elite solutions is progressively improved by successive relinking of pairs of elite solutions. Computational tests were conducted using a set of 81 instances, and results reveal that the GRASP is very competitive, achieving the best overall deviation from lower bounds and the highest number of best solutions found.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.cor.2011.10.014</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0305-0548 |
ispartof | Computers & operations research, 2013-12, Vol.40 (12), p.3206-3217 |
issn | 0305-0548 1873-765X 0305-0548 |
language | eng |
recordid | cdi_proquest_miscellaneous_1530977892 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Arc routing Buses (vehicles) Carp Combinatorial analysis Comparative analysis Deviation Evolutionary Evolutionary path-relinking Garbage collection GRASP filtering Heuristic Infeasible solution space search Mathematical models Metaheuristics Optimization techniques Reactive parameters Route optimization Searching Stochastic models Studies Transportation problem (Operations research) |
title | GRASP with evolutionary path-relinking for the capacitated arc routing problem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T03%3A33%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GRASP%20with%20evolutionary%20path-relinking%20for%20the%20capacitated%20arc%20routing%20problem&rft.jtitle=Computers%20&%20operations%20research&rft.au=Luiz%20Usberti,%20F%C3%A1bio&rft.date=2013-12-01&rft.volume=40&rft.issue=12&rft.spage=3206&rft.epage=3217&rft.pages=3206-3217&rft.issn=0305-0548&rft.eissn=1873-765X&rft.coden=CMORAP&rft_id=info:doi/10.1016/j.cor.2011.10.014&rft_dat=%3Cproquest_cross%3E1530977892%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1441696490&rft_id=info:pmid/&rft_els_id=S0305054811003029&rfr_iscdi=true |