Mechanical and physical properties of calcium silicate/alumina composite for biomedical engineering applications

The focus of this study is to investigate the effect of Al2O3 on α-calcium silicate (α-CaSiO3) ceramic. α-CaSiO3 was synthesized from CaO and SiO2 using mechanochemical method followed by calcinations at 1000°C. α-CaSiO3 and alumina were grinded using ball mill to create mixtures, containing 0–50w%...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the mechanical behavior of biomedical materials 2014-02, Vol.30, p.168-175
Hauptverfasser: Shirazi, F.S., Mehrali, M., Oshkour, A.A., Metselaar, H.S.C., Kadri, N.A., Abu Osman, N.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 175
container_issue
container_start_page 168
container_title Journal of the mechanical behavior of biomedical materials
container_volume 30
creator Shirazi, F.S.
Mehrali, M.
Oshkour, A.A.
Metselaar, H.S.C.
Kadri, N.A.
Abu Osman, N.A.
description The focus of this study is to investigate the effect of Al2O3 on α-calcium silicate (α-CaSiO3) ceramic. α-CaSiO3 was synthesized from CaO and SiO2 using mechanochemical method followed by calcinations at 1000°C. α-CaSiO3 and alumina were grinded using ball mill to create mixtures, containing 0–50w% of Al2O3 loadings. The powders were uniaxially pressed and followed by cold isostatic pressing (CIP) in order to achieve greater uniformity of compaction and to increase the shape capability. Afterward, the compaction was sintered in a resistive element furnace at both 1150°C and 1250°C with a 5h holding time. It was found that alumina reacted with α-CaSiO3 and formed alumina-rich calcium aluminates after sintering. An addition of 15wt% of Al2O3 powder at 1250°C were found to improve the hardness and fracture toughness of the calcium silicate. It was also observed that the average grain sizes of α-CaSiO3 /Al2O3 composite were maintained 500–700nm after sintering process.
doi_str_mv 10.1016/j.jmbbm.2013.10.024
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1530977402</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1751616113003664</els_id><sourcerecordid>1490713336</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-5702c32de61a6758e4b1eeafedd3637f6dcb961b027b6861d34457052433418f3</originalsourceid><addsrcrecordid>eNqFUcFO3DAUtKqiAgtfUKnysZcsfnZiew8cEGoBiYpLe7Yc5wW8SuxgJ5X4-3p3gWM52R7PvNGbIeQrsDUwkBfb9XZs23HNGYiCrBmvP5ET0EpXDDT7XO6qgUqChGNymvOWMcmY1l_IMa8FSK34CZl-oXuywTs7UBs6Oj295P1jSnHCNHvMNPa0IM4vI81-KL8zXthhGX2w1MVxitnPSPuYaOvjiN1ej-HRB8TkwyO107SX-RjyGTnq7ZDx_PVckT8_f_y-vq3uH27urq_uKyc2fK4axbgTvEMJVqpGY90Cou2x64QUqpedazcSWsZVK7WETtR10TRlM1GD7sWKfD_MLYs8L5hnM_rscBhswLhkA41gG6Vqxj-m1humQIhivCLiQHUp5pywN1Pyo00vBpjZtWK2Zt-K2bWyA0srRfXt1WBpSz7vmrcaCuHyQMCSyF-PyWTnMbiSZUI3my76_xr8A3z1n-4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1490713336</pqid></control><display><type>article</type><title>Mechanical and physical properties of calcium silicate/alumina composite for biomedical engineering applications</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Shirazi, F.S. ; Mehrali, M. ; Oshkour, A.A. ; Metselaar, H.S.C. ; Kadri, N.A. ; Abu Osman, N.A.</creator><creatorcontrib>Shirazi, F.S. ; Mehrali, M. ; Oshkour, A.A. ; Metselaar, H.S.C. ; Kadri, N.A. ; Abu Osman, N.A.</creatorcontrib><description>The focus of this study is to investigate the effect of Al2O3 on α-calcium silicate (α-CaSiO3) ceramic. α-CaSiO3 was synthesized from CaO and SiO2 using mechanochemical method followed by calcinations at 1000°C. α-CaSiO3 and alumina were grinded using ball mill to create mixtures, containing 0–50w% of Al2O3 loadings. The powders were uniaxially pressed and followed by cold isostatic pressing (CIP) in order to achieve greater uniformity of compaction and to increase the shape capability. Afterward, the compaction was sintered in a resistive element furnace at both 1150°C and 1250°C with a 5h holding time. It was found that alumina reacted with α-CaSiO3 and formed alumina-rich calcium aluminates after sintering. An addition of 15wt% of Al2O3 powder at 1250°C were found to improve the hardness and fracture toughness of the calcium silicate. It was also observed that the average grain sizes of α-CaSiO3 /Al2O3 composite were maintained 500–700nm after sintering process.</description><identifier>ISSN: 1751-6161</identifier><identifier>EISSN: 1878-0180</identifier><identifier>DOI: 10.1016/j.jmbbm.2013.10.024</identifier><identifier>PMID: 24316872</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Alumina ; Aluminum oxide ; Aluminum Oxide - chemistry ; Biocompatible Materials - chemistry ; Biomedical Engineering ; Biomedical materials ; Calcium aluminate ; Calcium Compounds - chemistry ; Calcium Silicate ; Calcium silicates ; Cold isostatic pressing ; Elastic Modulus ; Fracture toughness ; Hardness ; Mechanical Phenomena ; Mechanochemical synthesis ; Physical Phenomena ; Silicates - chemistry ; Sintering (powder metallurgy) ; Surgical implants ; Temperature ; Young's modulus</subject><ispartof>Journal of the mechanical behavior of biomedical materials, 2014-02, Vol.30, p.168-175</ispartof><rights>2013 Elsevier Ltd</rights><rights>2013 Published by Elsevier Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-5702c32de61a6758e4b1eeafedd3637f6dcb961b027b6861d34457052433418f3</citedby><cites>FETCH-LOGICAL-c392t-5702c32de61a6758e4b1eeafedd3637f6dcb961b027b6861d34457052433418f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jmbbm.2013.10.024$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24316872$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shirazi, F.S.</creatorcontrib><creatorcontrib>Mehrali, M.</creatorcontrib><creatorcontrib>Oshkour, A.A.</creatorcontrib><creatorcontrib>Metselaar, H.S.C.</creatorcontrib><creatorcontrib>Kadri, N.A.</creatorcontrib><creatorcontrib>Abu Osman, N.A.</creatorcontrib><title>Mechanical and physical properties of calcium silicate/alumina composite for biomedical engineering applications</title><title>Journal of the mechanical behavior of biomedical materials</title><addtitle>J Mech Behav Biomed Mater</addtitle><description>The focus of this study is to investigate the effect of Al2O3 on α-calcium silicate (α-CaSiO3) ceramic. α-CaSiO3 was synthesized from CaO and SiO2 using mechanochemical method followed by calcinations at 1000°C. α-CaSiO3 and alumina were grinded using ball mill to create mixtures, containing 0–50w% of Al2O3 loadings. The powders were uniaxially pressed and followed by cold isostatic pressing (CIP) in order to achieve greater uniformity of compaction and to increase the shape capability. Afterward, the compaction was sintered in a resistive element furnace at both 1150°C and 1250°C with a 5h holding time. It was found that alumina reacted with α-CaSiO3 and formed alumina-rich calcium aluminates after sintering. An addition of 15wt% of Al2O3 powder at 1250°C were found to improve the hardness and fracture toughness of the calcium silicate. It was also observed that the average grain sizes of α-CaSiO3 /Al2O3 composite were maintained 500–700nm after sintering process.</description><subject>Alumina</subject><subject>Aluminum oxide</subject><subject>Aluminum Oxide - chemistry</subject><subject>Biocompatible Materials - chemistry</subject><subject>Biomedical Engineering</subject><subject>Biomedical materials</subject><subject>Calcium aluminate</subject><subject>Calcium Compounds - chemistry</subject><subject>Calcium Silicate</subject><subject>Calcium silicates</subject><subject>Cold isostatic pressing</subject><subject>Elastic Modulus</subject><subject>Fracture toughness</subject><subject>Hardness</subject><subject>Mechanical Phenomena</subject><subject>Mechanochemical synthesis</subject><subject>Physical Phenomena</subject><subject>Silicates - chemistry</subject><subject>Sintering (powder metallurgy)</subject><subject>Surgical implants</subject><subject>Temperature</subject><subject>Young's modulus</subject><issn>1751-6161</issn><issn>1878-0180</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFUcFO3DAUtKqiAgtfUKnysZcsfnZiew8cEGoBiYpLe7Yc5wW8SuxgJ5X4-3p3gWM52R7PvNGbIeQrsDUwkBfb9XZs23HNGYiCrBmvP5ET0EpXDDT7XO6qgUqChGNymvOWMcmY1l_IMa8FSK34CZl-oXuywTs7UBs6Oj295P1jSnHCNHvMNPa0IM4vI81-KL8zXthhGX2w1MVxitnPSPuYaOvjiN1ej-HRB8TkwyO107SX-RjyGTnq7ZDx_PVckT8_f_y-vq3uH27urq_uKyc2fK4axbgTvEMJVqpGY90Cou2x64QUqpedazcSWsZVK7WETtR10TRlM1GD7sWKfD_MLYs8L5hnM_rscBhswLhkA41gG6Vqxj-m1humQIhivCLiQHUp5pywN1Pyo00vBpjZtWK2Zt-K2bWyA0srRfXt1WBpSz7vmrcaCuHyQMCSyF-PyWTnMbiSZUI3my76_xr8A3z1n-4</recordid><startdate>20140201</startdate><enddate>20140201</enddate><creator>Shirazi, F.S.</creator><creator>Mehrali, M.</creator><creator>Oshkour, A.A.</creator><creator>Metselaar, H.S.C.</creator><creator>Kadri, N.A.</creator><creator>Abu Osman, N.A.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QF</scope><scope>7QQ</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20140201</creationdate><title>Mechanical and physical properties of calcium silicate/alumina composite for biomedical engineering applications</title><author>Shirazi, F.S. ; Mehrali, M. ; Oshkour, A.A. ; Metselaar, H.S.C. ; Kadri, N.A. ; Abu Osman, N.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-5702c32de61a6758e4b1eeafedd3637f6dcb961b027b6861d34457052433418f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Alumina</topic><topic>Aluminum oxide</topic><topic>Aluminum Oxide - chemistry</topic><topic>Biocompatible Materials - chemistry</topic><topic>Biomedical Engineering</topic><topic>Biomedical materials</topic><topic>Calcium aluminate</topic><topic>Calcium Compounds - chemistry</topic><topic>Calcium Silicate</topic><topic>Calcium silicates</topic><topic>Cold isostatic pressing</topic><topic>Elastic Modulus</topic><topic>Fracture toughness</topic><topic>Hardness</topic><topic>Mechanical Phenomena</topic><topic>Mechanochemical synthesis</topic><topic>Physical Phenomena</topic><topic>Silicates - chemistry</topic><topic>Sintering (powder metallurgy)</topic><topic>Surgical implants</topic><topic>Temperature</topic><topic>Young's modulus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shirazi, F.S.</creatorcontrib><creatorcontrib>Mehrali, M.</creatorcontrib><creatorcontrib>Oshkour, A.A.</creatorcontrib><creatorcontrib>Metselaar, H.S.C.</creatorcontrib><creatorcontrib>Kadri, N.A.</creatorcontrib><creatorcontrib>Abu Osman, N.A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Aluminium Industry Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of the mechanical behavior of biomedical materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shirazi, F.S.</au><au>Mehrali, M.</au><au>Oshkour, A.A.</au><au>Metselaar, H.S.C.</au><au>Kadri, N.A.</au><au>Abu Osman, N.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical and physical properties of calcium silicate/alumina composite for biomedical engineering applications</atitle><jtitle>Journal of the mechanical behavior of biomedical materials</jtitle><addtitle>J Mech Behav Biomed Mater</addtitle><date>2014-02-01</date><risdate>2014</risdate><volume>30</volume><spage>168</spage><epage>175</epage><pages>168-175</pages><issn>1751-6161</issn><eissn>1878-0180</eissn><abstract>The focus of this study is to investigate the effect of Al2O3 on α-calcium silicate (α-CaSiO3) ceramic. α-CaSiO3 was synthesized from CaO and SiO2 using mechanochemical method followed by calcinations at 1000°C. α-CaSiO3 and alumina were grinded using ball mill to create mixtures, containing 0–50w% of Al2O3 loadings. The powders were uniaxially pressed and followed by cold isostatic pressing (CIP) in order to achieve greater uniformity of compaction and to increase the shape capability. Afterward, the compaction was sintered in a resistive element furnace at both 1150°C and 1250°C with a 5h holding time. It was found that alumina reacted with α-CaSiO3 and formed alumina-rich calcium aluminates after sintering. An addition of 15wt% of Al2O3 powder at 1250°C were found to improve the hardness and fracture toughness of the calcium silicate. It was also observed that the average grain sizes of α-CaSiO3 /Al2O3 composite were maintained 500–700nm after sintering process.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>24316872</pmid><doi>10.1016/j.jmbbm.2013.10.024</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1751-6161
ispartof Journal of the mechanical behavior of biomedical materials, 2014-02, Vol.30, p.168-175
issn 1751-6161
1878-0180
language eng
recordid cdi_proquest_miscellaneous_1530977402
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Alumina
Aluminum oxide
Aluminum Oxide - chemistry
Biocompatible Materials - chemistry
Biomedical Engineering
Biomedical materials
Calcium aluminate
Calcium Compounds - chemistry
Calcium Silicate
Calcium silicates
Cold isostatic pressing
Elastic Modulus
Fracture toughness
Hardness
Mechanical Phenomena
Mechanochemical synthesis
Physical Phenomena
Silicates - chemistry
Sintering (powder metallurgy)
Surgical implants
Temperature
Young's modulus
title Mechanical and physical properties of calcium silicate/alumina composite for biomedical engineering applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T06%3A37%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20and%20physical%20properties%20of%20calcium%20silicate/alumina%20composite%20for%20biomedical%20engineering%20applications&rft.jtitle=Journal%20of%20the%20mechanical%20behavior%20of%20biomedical%20materials&rft.au=Shirazi,%20F.S.&rft.date=2014-02-01&rft.volume=30&rft.spage=168&rft.epage=175&rft.pages=168-175&rft.issn=1751-6161&rft.eissn=1878-0180&rft_id=info:doi/10.1016/j.jmbbm.2013.10.024&rft_dat=%3Cproquest_cross%3E1490713336%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1490713336&rft_id=info:pmid/24316872&rft_els_id=S1751616113003664&rfr_iscdi=true