The existence and uniqueness of solution to wavelet collocation

The study of the numerical solutions of PDEs with wavelet collocation has yielded a number of substantial results. However, the existence and uniqueness of solution has not been discussed yet. In this paper, the existence and uniqueness of solution to wavelet collocation for elliptic equations is es...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics and computation 2014-03, Vol.231, p.63-72
Hauptverfasser: Qin, Xinqiang, Fang, Baoyan, Tian, Shuangliang, Tong, Xiaohong, Wang, Zhigang, Su, Lijun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 72
container_issue
container_start_page 63
container_title Applied mathematics and computation
container_volume 231
creator Qin, Xinqiang
Fang, Baoyan
Tian, Shuangliang
Tong, Xiaohong
Wang, Zhigang
Su, Lijun
description The study of the numerical solutions of PDEs with wavelet collocation has yielded a number of substantial results. However, the existence and uniqueness of solution has not been discussed yet. In this paper, the existence and uniqueness of solution to wavelet collocation for elliptic equations is established and discussed. Moreover, wavelet collocation is applied to numerical example to examine its appropriateness. According to numerical example and analysis, it is seen that the existence and uniqueness of solution of this paper is feasible, and the new theory is meaningful for developing wavelet collocation.
doi_str_mv 10.1016/j.amc.2013.12.106
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1530969992</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0096300313013969</els_id><sourcerecordid>1530969992</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-c6652c4639f3c13dfef53a90067471f10379f78dd68a63303065d99c0350fca33</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AG85emmddNp0gweRxS9Y8LKeQ0gnmNJt1qZd9d-bsp49Dby8zzDzMHYtIBcg5G2bm53NCxCYiyJF8oQtxKrGrJKlOmULACUzBMBzdhFjCwC1FOWC3W8_iNO3jyP1lrjpGz71_nOinmLkwfEYumn0oedj4F_mQB2N3IauC9bM8SU7c6aLdPU3l-z96XG7fsk2b8-v64dNZhFhzKyUVWFLicqhFdg4chUaBSDrshZOANbK1aumkSsjE4Egq0YpC1iBswZxyW6Oe_dDSNfFUe98tNR1pqcwRS0qTB8qpYpUFceqHUKMAzm9H_zODD9agJ5l6VYnWXqWpUWRIpmYuyND6YeDp0FH62cjjR_IjroJ_h_6F13ccPI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1530969992</pqid></control><display><type>article</type><title>The existence and uniqueness of solution to wavelet collocation</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Qin, Xinqiang ; Fang, Baoyan ; Tian, Shuangliang ; Tong, Xiaohong ; Wang, Zhigang ; Su, Lijun</creator><creatorcontrib>Qin, Xinqiang ; Fang, Baoyan ; Tian, Shuangliang ; Tong, Xiaohong ; Wang, Zhigang ; Su, Lijun</creatorcontrib><description>The study of the numerical solutions of PDEs with wavelet collocation has yielded a number of substantial results. However, the existence and uniqueness of solution has not been discussed yet. In this paper, the existence and uniqueness of solution to wavelet collocation for elliptic equations is established and discussed. Moreover, wavelet collocation is applied to numerical example to examine its appropriateness. According to numerical example and analysis, it is seen that the existence and uniqueness of solution of this paper is feasible, and the new theory is meaningful for developing wavelet collocation.</description><identifier>ISSN: 0096-3003</identifier><identifier>EISSN: 1873-5649</identifier><identifier>DOI: 10.1016/j.amc.2013.12.106</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Collocation ; Computation ; Elliptic equations ; Existence and uniqueness of solution ; Mathematical analysis ; Mathematical models ; Partial differential equations ; Quasi-Shannon scaling function ; Scaling function ; Uniqueness ; Wavelet ; Wavelet collocation ; Wavelet methods</subject><ispartof>Applied mathematics and computation, 2014-03, Vol.231, p.63-72</ispartof><rights>2014 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-c6652c4639f3c13dfef53a90067471f10379f78dd68a63303065d99c0350fca33</citedby><cites>FETCH-LOGICAL-c330t-c6652c4639f3c13dfef53a90067471f10379f78dd68a63303065d99c0350fca33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.amc.2013.12.106$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Qin, Xinqiang</creatorcontrib><creatorcontrib>Fang, Baoyan</creatorcontrib><creatorcontrib>Tian, Shuangliang</creatorcontrib><creatorcontrib>Tong, Xiaohong</creatorcontrib><creatorcontrib>Wang, Zhigang</creatorcontrib><creatorcontrib>Su, Lijun</creatorcontrib><title>The existence and uniqueness of solution to wavelet collocation</title><title>Applied mathematics and computation</title><description>The study of the numerical solutions of PDEs with wavelet collocation has yielded a number of substantial results. However, the existence and uniqueness of solution has not been discussed yet. In this paper, the existence and uniqueness of solution to wavelet collocation for elliptic equations is established and discussed. Moreover, wavelet collocation is applied to numerical example to examine its appropriateness. According to numerical example and analysis, it is seen that the existence and uniqueness of solution of this paper is feasible, and the new theory is meaningful for developing wavelet collocation.</description><subject>Collocation</subject><subject>Computation</subject><subject>Elliptic equations</subject><subject>Existence and uniqueness of solution</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Partial differential equations</subject><subject>Quasi-Shannon scaling function</subject><subject>Scaling function</subject><subject>Uniqueness</subject><subject>Wavelet</subject><subject>Wavelet collocation</subject><subject>Wavelet methods</subject><issn>0096-3003</issn><issn>1873-5649</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AG85emmddNp0gweRxS9Y8LKeQ0gnmNJt1qZd9d-bsp49Dby8zzDzMHYtIBcg5G2bm53NCxCYiyJF8oQtxKrGrJKlOmULACUzBMBzdhFjCwC1FOWC3W8_iNO3jyP1lrjpGz71_nOinmLkwfEYumn0oedj4F_mQB2N3IauC9bM8SU7c6aLdPU3l-z96XG7fsk2b8-v64dNZhFhzKyUVWFLicqhFdg4chUaBSDrshZOANbK1aumkSsjE4Egq0YpC1iBswZxyW6Oe_dDSNfFUe98tNR1pqcwRS0qTB8qpYpUFceqHUKMAzm9H_zODD9agJ5l6VYnWXqWpUWRIpmYuyND6YeDp0FH62cjjR_IjroJ_h_6F13ccPI</recordid><startdate>20140315</startdate><enddate>20140315</enddate><creator>Qin, Xinqiang</creator><creator>Fang, Baoyan</creator><creator>Tian, Shuangliang</creator><creator>Tong, Xiaohong</creator><creator>Wang, Zhigang</creator><creator>Su, Lijun</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140315</creationdate><title>The existence and uniqueness of solution to wavelet collocation</title><author>Qin, Xinqiang ; Fang, Baoyan ; Tian, Shuangliang ; Tong, Xiaohong ; Wang, Zhigang ; Su, Lijun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-c6652c4639f3c13dfef53a90067471f10379f78dd68a63303065d99c0350fca33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Collocation</topic><topic>Computation</topic><topic>Elliptic equations</topic><topic>Existence and uniqueness of solution</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Partial differential equations</topic><topic>Quasi-Shannon scaling function</topic><topic>Scaling function</topic><topic>Uniqueness</topic><topic>Wavelet</topic><topic>Wavelet collocation</topic><topic>Wavelet methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qin, Xinqiang</creatorcontrib><creatorcontrib>Fang, Baoyan</creatorcontrib><creatorcontrib>Tian, Shuangliang</creatorcontrib><creatorcontrib>Tong, Xiaohong</creatorcontrib><creatorcontrib>Wang, Zhigang</creatorcontrib><creatorcontrib>Su, Lijun</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied mathematics and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qin, Xinqiang</au><au>Fang, Baoyan</au><au>Tian, Shuangliang</au><au>Tong, Xiaohong</au><au>Wang, Zhigang</au><au>Su, Lijun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The existence and uniqueness of solution to wavelet collocation</atitle><jtitle>Applied mathematics and computation</jtitle><date>2014-03-15</date><risdate>2014</risdate><volume>231</volume><spage>63</spage><epage>72</epage><pages>63-72</pages><issn>0096-3003</issn><eissn>1873-5649</eissn><abstract>The study of the numerical solutions of PDEs with wavelet collocation has yielded a number of substantial results. However, the existence and uniqueness of solution has not been discussed yet. In this paper, the existence and uniqueness of solution to wavelet collocation for elliptic equations is established and discussed. Moreover, wavelet collocation is applied to numerical example to examine its appropriateness. According to numerical example and analysis, it is seen that the existence and uniqueness of solution of this paper is feasible, and the new theory is meaningful for developing wavelet collocation.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.amc.2013.12.106</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0096-3003
ispartof Applied mathematics and computation, 2014-03, Vol.231, p.63-72
issn 0096-3003
1873-5649
language eng
recordid cdi_proquest_miscellaneous_1530969992
source ScienceDirect Journals (5 years ago - present)
subjects Collocation
Computation
Elliptic equations
Existence and uniqueness of solution
Mathematical analysis
Mathematical models
Partial differential equations
Quasi-Shannon scaling function
Scaling function
Uniqueness
Wavelet
Wavelet collocation
Wavelet methods
title The existence and uniqueness of solution to wavelet collocation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T17%3A52%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20existence%20and%20uniqueness%20of%20solution%20to%20wavelet%20collocation&rft.jtitle=Applied%20mathematics%20and%20computation&rft.au=Qin,%20Xinqiang&rft.date=2014-03-15&rft.volume=231&rft.spage=63&rft.epage=72&rft.pages=63-72&rft.issn=0096-3003&rft.eissn=1873-5649&rft_id=info:doi/10.1016/j.amc.2013.12.106&rft_dat=%3Cproquest_cross%3E1530969992%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1530969992&rft_id=info:pmid/&rft_els_id=S0096300313013969&rfr_iscdi=true