Dependent mixture models: Clustering and borrowing information
Most of the Bayesian nonparametric models for non-exchangeable data that are used in applications are based on some extension to the multivariate setting of the Dirichlet process, the best known being MacEachern’s dependent Dirichlet process. A comparison of two recently introduced classes of vector...
Gespeichert in:
Veröffentlicht in: | Computational statistics & data analysis 2014-03, Vol.71, p.417-433 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 433 |
---|---|
container_issue | |
container_start_page | 417 |
container_title | Computational statistics & data analysis |
container_volume | 71 |
creator | Lijoi, Antonio Nipoti, Bernardo Prünster, Igor |
description | Most of the Bayesian nonparametric models for non-exchangeable data that are used in applications are based on some extension to the multivariate setting of the Dirichlet process, the best known being MacEachern’s dependent Dirichlet process. A comparison of two recently introduced classes of vectors of dependent nonparametric priors, based on the Dirichlet and the normalized σ-stable processes respectively, is provided. These priors are used to define dependent hierarchical mixture models whose distributional properties are investigated. Furthermore, their inferential performance is examined through an extensive simulation study. The models exhibit different features, especially in terms of the clustering behavior and the borrowing of information across studies. Compared to popular Dirichlet process based models, mixtures of dependent normalized σ-stable processes turn out to be a valid choice being capable of more effectively detecting the clustering structure featured by the data. |
doi_str_mv | 10.1016/j.csda.2013.06.015 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1530968879</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167947313002272</els_id><sourcerecordid>1530968879</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-a53753cc0392c8c23b4ebf9ad504d3698fdd639ab2b90f818bc982659fafaa3f3</originalsourceid><addsrcrecordid>eNp9kMtKxDAUQIMoOI7-gKsu3bTm0TaJiCDjEwbc6DqkyY1kaJMx6fj4e1vGtavLhXMu3IPQOcEVwaS93FQmW11RTFiF2wqT5gAtiOC05Kyhh2gxQbyUNWfH6CTnDcaY1lws0M0dbCFYCGMx-O9xl6AYooU-XxWrfpdHSD68FzrYoospxa9588HFNOjRx3CKjpzuM5z9zSV6e7h_XT2V65fH59XtujSM87HUDeMNMwYzSY0wlHU1dE5q2-DaslYKZ23LpO5oJ7ETRHRGCto20mmnNXNsiS72d7cpfuwgj2rw2UDf6wBxlxVpGJatEFxOKN2jJsWcEzi1TX7Q6UcRrOZYaqPmWGqOpXCrpliTdL2Xps_h00NS2XgIBqxPYEZlo_9P_wXD03Ob</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1530968879</pqid></control><display><type>article</type><title>Dependent mixture models: Clustering and borrowing information</title><source>Elsevier ScienceDirect Journals</source><creator>Lijoi, Antonio ; Nipoti, Bernardo ; Prünster, Igor</creator><creatorcontrib>Lijoi, Antonio ; Nipoti, Bernardo ; Prünster, Igor</creatorcontrib><description>Most of the Bayesian nonparametric models for non-exchangeable data that are used in applications are based on some extension to the multivariate setting of the Dirichlet process, the best known being MacEachern’s dependent Dirichlet process. A comparison of two recently introduced classes of vectors of dependent nonparametric priors, based on the Dirichlet and the normalized σ-stable processes respectively, is provided. These priors are used to define dependent hierarchical mixture models whose distributional properties are investigated. Furthermore, their inferential performance is examined through an extensive simulation study. The models exhibit different features, especially in terms of the clustering behavior and the borrowing of information across studies. Compared to popular Dirichlet process based models, mixtures of dependent normalized σ-stable processes turn out to be a valid choice being capable of more effectively detecting the clustering structure featured by the data.</description><identifier>ISSN: 0167-9473</identifier><identifier>EISSN: 1872-7352</identifier><identifier>DOI: 10.1016/j.csda.2013.06.015</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Bayesian nonparametrics ; Clustering ; Computer simulation ; Data processing ; Dependent process ; Dirichlet problem ; Dirichlet process ; Generalized Pólya urn scheme ; Mathematical analysis ; Mathematical models ; Mixture models ; Normalized [formula omitted]-stable process ; Partially exchangeable random partition ; Statistics ; Vectors (mathematics)</subject><ispartof>Computational statistics & data analysis, 2014-03, Vol.71, p.417-433</ispartof><rights>2013 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-a53753cc0392c8c23b4ebf9ad504d3698fdd639ab2b90f818bc982659fafaa3f3</citedby><cites>FETCH-LOGICAL-c377t-a53753cc0392c8c23b4ebf9ad504d3698fdd639ab2b90f818bc982659fafaa3f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.csda.2013.06.015$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids></links><search><creatorcontrib>Lijoi, Antonio</creatorcontrib><creatorcontrib>Nipoti, Bernardo</creatorcontrib><creatorcontrib>Prünster, Igor</creatorcontrib><title>Dependent mixture models: Clustering and borrowing information</title><title>Computational statistics & data analysis</title><description>Most of the Bayesian nonparametric models for non-exchangeable data that are used in applications are based on some extension to the multivariate setting of the Dirichlet process, the best known being MacEachern’s dependent Dirichlet process. A comparison of two recently introduced classes of vectors of dependent nonparametric priors, based on the Dirichlet and the normalized σ-stable processes respectively, is provided. These priors are used to define dependent hierarchical mixture models whose distributional properties are investigated. Furthermore, their inferential performance is examined through an extensive simulation study. The models exhibit different features, especially in terms of the clustering behavior and the borrowing of information across studies. Compared to popular Dirichlet process based models, mixtures of dependent normalized σ-stable processes turn out to be a valid choice being capable of more effectively detecting the clustering structure featured by the data.</description><subject>Bayesian nonparametrics</subject><subject>Clustering</subject><subject>Computer simulation</subject><subject>Data processing</subject><subject>Dependent process</subject><subject>Dirichlet problem</subject><subject>Dirichlet process</subject><subject>Generalized Pólya urn scheme</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mixture models</subject><subject>Normalized [formula omitted]-stable process</subject><subject>Partially exchangeable random partition</subject><subject>Statistics</subject><subject>Vectors (mathematics)</subject><issn>0167-9473</issn><issn>1872-7352</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxDAUQIMoOI7-gKsu3bTm0TaJiCDjEwbc6DqkyY1kaJMx6fj4e1vGtavLhXMu3IPQOcEVwaS93FQmW11RTFiF2wqT5gAtiOC05Kyhh2gxQbyUNWfH6CTnDcaY1lws0M0dbCFYCGMx-O9xl6AYooU-XxWrfpdHSD68FzrYoospxa9588HFNOjRx3CKjpzuM5z9zSV6e7h_XT2V65fH59XtujSM87HUDeMNMwYzSY0wlHU1dE5q2-DaslYKZ23LpO5oJ7ETRHRGCto20mmnNXNsiS72d7cpfuwgj2rw2UDf6wBxlxVpGJatEFxOKN2jJsWcEzi1TX7Q6UcRrOZYaqPmWGqOpXCrpliTdL2Xps_h00NS2XgIBqxPYEZlo_9P_wXD03Ob</recordid><startdate>20140301</startdate><enddate>20140301</enddate><creator>Lijoi, Antonio</creator><creator>Nipoti, Bernardo</creator><creator>Prünster, Igor</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140301</creationdate><title>Dependent mixture models: Clustering and borrowing information</title><author>Lijoi, Antonio ; Nipoti, Bernardo ; Prünster, Igor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-a53753cc0392c8c23b4ebf9ad504d3698fdd639ab2b90f818bc982659fafaa3f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Bayesian nonparametrics</topic><topic>Clustering</topic><topic>Computer simulation</topic><topic>Data processing</topic><topic>Dependent process</topic><topic>Dirichlet problem</topic><topic>Dirichlet process</topic><topic>Generalized Pólya urn scheme</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mixture models</topic><topic>Normalized [formula omitted]-stable process</topic><topic>Partially exchangeable random partition</topic><topic>Statistics</topic><topic>Vectors (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lijoi, Antonio</creatorcontrib><creatorcontrib>Nipoti, Bernardo</creatorcontrib><creatorcontrib>Prünster, Igor</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computational statistics & data analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lijoi, Antonio</au><au>Nipoti, Bernardo</au><au>Prünster, Igor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dependent mixture models: Clustering and borrowing information</atitle><jtitle>Computational statistics & data analysis</jtitle><date>2014-03-01</date><risdate>2014</risdate><volume>71</volume><spage>417</spage><epage>433</epage><pages>417-433</pages><issn>0167-9473</issn><eissn>1872-7352</eissn><abstract>Most of the Bayesian nonparametric models for non-exchangeable data that are used in applications are based on some extension to the multivariate setting of the Dirichlet process, the best known being MacEachern’s dependent Dirichlet process. A comparison of two recently introduced classes of vectors of dependent nonparametric priors, based on the Dirichlet and the normalized σ-stable processes respectively, is provided. These priors are used to define dependent hierarchical mixture models whose distributional properties are investigated. Furthermore, their inferential performance is examined through an extensive simulation study. The models exhibit different features, especially in terms of the clustering behavior and the borrowing of information across studies. Compared to popular Dirichlet process based models, mixtures of dependent normalized σ-stable processes turn out to be a valid choice being capable of more effectively detecting the clustering structure featured by the data.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.csda.2013.06.015</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-9473 |
ispartof | Computational statistics & data analysis, 2014-03, Vol.71, p.417-433 |
issn | 0167-9473 1872-7352 |
language | eng |
recordid | cdi_proquest_miscellaneous_1530968879 |
source | Elsevier ScienceDirect Journals |
subjects | Bayesian nonparametrics Clustering Computer simulation Data processing Dependent process Dirichlet problem Dirichlet process Generalized Pólya urn scheme Mathematical analysis Mathematical models Mixture models Normalized [formula omitted]-stable process Partially exchangeable random partition Statistics Vectors (mathematics) |
title | Dependent mixture models: Clustering and borrowing information |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T00%3A22%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dependent%20mixture%20models:%20Clustering%20and%20borrowing%20information&rft.jtitle=Computational%20statistics%20&%20data%20analysis&rft.au=Lijoi,%20Antonio&rft.date=2014-03-01&rft.volume=71&rft.spage=417&rft.epage=433&rft.pages=417-433&rft.issn=0167-9473&rft.eissn=1872-7352&rft_id=info:doi/10.1016/j.csda.2013.06.015&rft_dat=%3Cproquest_cross%3E1530968879%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1530968879&rft_id=info:pmid/&rft_els_id=S0167947313002272&rfr_iscdi=true |