Dependent mixture models: Clustering and borrowing information

Most of the Bayesian nonparametric models for non-exchangeable data that are used in applications are based on some extension to the multivariate setting of the Dirichlet process, the best known being MacEachern’s dependent Dirichlet process. A comparison of two recently introduced classes of vector...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational statistics & data analysis 2014-03, Vol.71, p.417-433
Hauptverfasser: Lijoi, Antonio, Nipoti, Bernardo, Prünster, Igor
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 433
container_issue
container_start_page 417
container_title Computational statistics & data analysis
container_volume 71
creator Lijoi, Antonio
Nipoti, Bernardo
Prünster, Igor
description Most of the Bayesian nonparametric models for non-exchangeable data that are used in applications are based on some extension to the multivariate setting of the Dirichlet process, the best known being MacEachern’s dependent Dirichlet process. A comparison of two recently introduced classes of vectors of dependent nonparametric priors, based on the Dirichlet and the normalized σ-stable processes respectively, is provided. These priors are used to define dependent hierarchical mixture models whose distributional properties are investigated. Furthermore, their inferential performance is examined through an extensive simulation study. The models exhibit different features, especially in terms of the clustering behavior and the borrowing of information across studies. Compared to popular Dirichlet process based models, mixtures of dependent normalized σ-stable processes turn out to be a valid choice being capable of more effectively detecting the clustering structure featured by the data.
doi_str_mv 10.1016/j.csda.2013.06.015
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1530968879</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167947313002272</els_id><sourcerecordid>1530968879</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-a53753cc0392c8c23b4ebf9ad504d3698fdd639ab2b90f818bc982659fafaa3f3</originalsourceid><addsrcrecordid>eNp9kMtKxDAUQIMoOI7-gKsu3bTm0TaJiCDjEwbc6DqkyY1kaJMx6fj4e1vGtavLhXMu3IPQOcEVwaS93FQmW11RTFiF2wqT5gAtiOC05Kyhh2gxQbyUNWfH6CTnDcaY1lws0M0dbCFYCGMx-O9xl6AYooU-XxWrfpdHSD68FzrYoospxa9588HFNOjRx3CKjpzuM5z9zSV6e7h_XT2V65fH59XtujSM87HUDeMNMwYzSY0wlHU1dE5q2-DaslYKZ23LpO5oJ7ETRHRGCto20mmnNXNsiS72d7cpfuwgj2rw2UDf6wBxlxVpGJatEFxOKN2jJsWcEzi1TX7Q6UcRrOZYaqPmWGqOpXCrpliTdL2Xps_h00NS2XgIBqxPYEZlo_9P_wXD03Ob</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1530968879</pqid></control><display><type>article</type><title>Dependent mixture models: Clustering and borrowing information</title><source>Elsevier ScienceDirect Journals</source><creator>Lijoi, Antonio ; Nipoti, Bernardo ; Prünster, Igor</creator><creatorcontrib>Lijoi, Antonio ; Nipoti, Bernardo ; Prünster, Igor</creatorcontrib><description>Most of the Bayesian nonparametric models for non-exchangeable data that are used in applications are based on some extension to the multivariate setting of the Dirichlet process, the best known being MacEachern’s dependent Dirichlet process. A comparison of two recently introduced classes of vectors of dependent nonparametric priors, based on the Dirichlet and the normalized σ-stable processes respectively, is provided. These priors are used to define dependent hierarchical mixture models whose distributional properties are investigated. Furthermore, their inferential performance is examined through an extensive simulation study. The models exhibit different features, especially in terms of the clustering behavior and the borrowing of information across studies. Compared to popular Dirichlet process based models, mixtures of dependent normalized σ-stable processes turn out to be a valid choice being capable of more effectively detecting the clustering structure featured by the data.</description><identifier>ISSN: 0167-9473</identifier><identifier>EISSN: 1872-7352</identifier><identifier>DOI: 10.1016/j.csda.2013.06.015</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Bayesian nonparametrics ; Clustering ; Computer simulation ; Data processing ; Dependent process ; Dirichlet problem ; Dirichlet process ; Generalized Pólya urn scheme ; Mathematical analysis ; Mathematical models ; Mixture models ; Normalized [formula omitted]-stable process ; Partially exchangeable random partition ; Statistics ; Vectors (mathematics)</subject><ispartof>Computational statistics &amp; data analysis, 2014-03, Vol.71, p.417-433</ispartof><rights>2013 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-a53753cc0392c8c23b4ebf9ad504d3698fdd639ab2b90f818bc982659fafaa3f3</citedby><cites>FETCH-LOGICAL-c377t-a53753cc0392c8c23b4ebf9ad504d3698fdd639ab2b90f818bc982659fafaa3f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.csda.2013.06.015$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids></links><search><creatorcontrib>Lijoi, Antonio</creatorcontrib><creatorcontrib>Nipoti, Bernardo</creatorcontrib><creatorcontrib>Prünster, Igor</creatorcontrib><title>Dependent mixture models: Clustering and borrowing information</title><title>Computational statistics &amp; data analysis</title><description>Most of the Bayesian nonparametric models for non-exchangeable data that are used in applications are based on some extension to the multivariate setting of the Dirichlet process, the best known being MacEachern’s dependent Dirichlet process. A comparison of two recently introduced classes of vectors of dependent nonparametric priors, based on the Dirichlet and the normalized σ-stable processes respectively, is provided. These priors are used to define dependent hierarchical mixture models whose distributional properties are investigated. Furthermore, their inferential performance is examined through an extensive simulation study. The models exhibit different features, especially in terms of the clustering behavior and the borrowing of information across studies. Compared to popular Dirichlet process based models, mixtures of dependent normalized σ-stable processes turn out to be a valid choice being capable of more effectively detecting the clustering structure featured by the data.</description><subject>Bayesian nonparametrics</subject><subject>Clustering</subject><subject>Computer simulation</subject><subject>Data processing</subject><subject>Dependent process</subject><subject>Dirichlet problem</subject><subject>Dirichlet process</subject><subject>Generalized Pólya urn scheme</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mixture models</subject><subject>Normalized [formula omitted]-stable process</subject><subject>Partially exchangeable random partition</subject><subject>Statistics</subject><subject>Vectors (mathematics)</subject><issn>0167-9473</issn><issn>1872-7352</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxDAUQIMoOI7-gKsu3bTm0TaJiCDjEwbc6DqkyY1kaJMx6fj4e1vGtavLhXMu3IPQOcEVwaS93FQmW11RTFiF2wqT5gAtiOC05Kyhh2gxQbyUNWfH6CTnDcaY1lws0M0dbCFYCGMx-O9xl6AYooU-XxWrfpdHSD68FzrYoospxa9588HFNOjRx3CKjpzuM5z9zSV6e7h_XT2V65fH59XtujSM87HUDeMNMwYzSY0wlHU1dE5q2-DaslYKZ23LpO5oJ7ETRHRGCto20mmnNXNsiS72d7cpfuwgj2rw2UDf6wBxlxVpGJatEFxOKN2jJsWcEzi1TX7Q6UcRrOZYaqPmWGqOpXCrpliTdL2Xps_h00NS2XgIBqxPYEZlo_9P_wXD03Ob</recordid><startdate>20140301</startdate><enddate>20140301</enddate><creator>Lijoi, Antonio</creator><creator>Nipoti, Bernardo</creator><creator>Prünster, Igor</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140301</creationdate><title>Dependent mixture models: Clustering and borrowing information</title><author>Lijoi, Antonio ; Nipoti, Bernardo ; Prünster, Igor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-a53753cc0392c8c23b4ebf9ad504d3698fdd639ab2b90f818bc982659fafaa3f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Bayesian nonparametrics</topic><topic>Clustering</topic><topic>Computer simulation</topic><topic>Data processing</topic><topic>Dependent process</topic><topic>Dirichlet problem</topic><topic>Dirichlet process</topic><topic>Generalized Pólya urn scheme</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mixture models</topic><topic>Normalized [formula omitted]-stable process</topic><topic>Partially exchangeable random partition</topic><topic>Statistics</topic><topic>Vectors (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lijoi, Antonio</creatorcontrib><creatorcontrib>Nipoti, Bernardo</creatorcontrib><creatorcontrib>Prünster, Igor</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computational statistics &amp; data analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lijoi, Antonio</au><au>Nipoti, Bernardo</au><au>Prünster, Igor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dependent mixture models: Clustering and borrowing information</atitle><jtitle>Computational statistics &amp; data analysis</jtitle><date>2014-03-01</date><risdate>2014</risdate><volume>71</volume><spage>417</spage><epage>433</epage><pages>417-433</pages><issn>0167-9473</issn><eissn>1872-7352</eissn><abstract>Most of the Bayesian nonparametric models for non-exchangeable data that are used in applications are based on some extension to the multivariate setting of the Dirichlet process, the best known being MacEachern’s dependent Dirichlet process. A comparison of two recently introduced classes of vectors of dependent nonparametric priors, based on the Dirichlet and the normalized σ-stable processes respectively, is provided. These priors are used to define dependent hierarchical mixture models whose distributional properties are investigated. Furthermore, their inferential performance is examined through an extensive simulation study. The models exhibit different features, especially in terms of the clustering behavior and the borrowing of information across studies. Compared to popular Dirichlet process based models, mixtures of dependent normalized σ-stable processes turn out to be a valid choice being capable of more effectively detecting the clustering structure featured by the data.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.csda.2013.06.015</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0167-9473
ispartof Computational statistics & data analysis, 2014-03, Vol.71, p.417-433
issn 0167-9473
1872-7352
language eng
recordid cdi_proquest_miscellaneous_1530968879
source Elsevier ScienceDirect Journals
subjects Bayesian nonparametrics
Clustering
Computer simulation
Data processing
Dependent process
Dirichlet problem
Dirichlet process
Generalized Pólya urn scheme
Mathematical analysis
Mathematical models
Mixture models
Normalized [formula omitted]-stable process
Partially exchangeable random partition
Statistics
Vectors (mathematics)
title Dependent mixture models: Clustering and borrowing information
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T00%3A22%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dependent%20mixture%20models:%20Clustering%20and%20borrowing%20information&rft.jtitle=Computational%20statistics%20&%20data%20analysis&rft.au=Lijoi,%20Antonio&rft.date=2014-03-01&rft.volume=71&rft.spage=417&rft.epage=433&rft.pages=417-433&rft.issn=0167-9473&rft.eissn=1872-7352&rft_id=info:doi/10.1016/j.csda.2013.06.015&rft_dat=%3Cproquest_cross%3E1530968879%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1530968879&rft_id=info:pmid/&rft_els_id=S0167947313002272&rfr_iscdi=true