Decoration of silk fibroin by click chemistry for biomedical application

Silkfibroin (SF) has an excellent biocompatibility and its remarkable structure translates into exciting mechanical properties rendering this biomaterial particularly fascinating for biomedical application. To further boost the material’s biological/preclinical impact, SF is decorated with biologics...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of structural biology 2014-06, Vol.186 (3), p.420-430
Hauptverfasser: Zhao, Hongshi, Heusler, Eva, Jones, Gabriel, Li, Linhao, Werner, Vera, Germershaus, Oliver, Ritzer, Jennifer, Luehmann, Tessa, Meinel, Lorenz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 430
container_issue 3
container_start_page 420
container_title Journal of structural biology
container_volume 186
creator Zhao, Hongshi
Heusler, Eva
Jones, Gabriel
Li, Linhao
Werner, Vera
Germershaus, Oliver
Ritzer, Jennifer
Luehmann, Tessa
Meinel, Lorenz
description Silkfibroin (SF) has an excellent biocompatibility and its remarkable structure translates into exciting mechanical properties rendering this biomaterial particularly fascinating for biomedical application. To further boost the material’s biological/preclinical impact, SF is decorated with biologics, typically by carbodiimide/N-hydroxysuccinimide coupling (EDC/NHS). For biomedical application, this chemistry challenges the product risk profile due to the formation of covalent aggregates, particularly when decoration is with biologics occurring naturally in humans as these aggregates may prime for autoimmunity. Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC; click chemistry) provides the necessary specificity to avoid such intermolecular, covalent aggregates. We present a blueprint outlining the necessary chemistry rendering SF compatible with CuAAC and with a particular focus on structural consequences. For that, the number of SF carboxyl groups (carboxyl-SF; required for EDC/NHS chemistry) or azido groups (azido-SF; required for click chemistry) was tailored by means of diazonium coupling of the SF tyrosine residues. Structural impact on SF and decorated SF was characterized by Fourier transform infrared spectroscopy (FTIR). The click chemistry yielded a better controlled product as compared to the EDC/NHS chemistry with no formation of inter- and intramolecular crosslinks as demonstrated for SF decorated with fluorescent model compounds or a biologic, fibroblast growth factor 2 (FGF2), respectively. In conclusion, SF can readily be translated into a scaffold compatible with click chemistry yielding decorated products with a better risk profile for biomedical application.
doi_str_mv 10.1016/j.jsb.2014.02.009
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1530951790</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1047847714000331</els_id><sourcerecordid>1530951790</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-e460d9c71518d567dfd406944b4ff216e7238791e7a27bbe8f3e27ba078d63d63</originalsourceid><addsrcrecordid>eNp9kL1OwzAURi0EoqXwACzII0uC7Th2IiZUfqVKLDBbjnMtnKZxsVOkvj0uLYxIlu4dzvfJ9yB0SUlOCRU3Xd7FJmeE8pywnJD6CE0pqcusEqU83u1cZhWXcoLOYuwIIZwyeoomjJdSiIpN0fM9GB_06PyAvcXR9UtsXRO8G3CzxaZ3ZonNB6xcHMMWWx9w4_wKWmd0j_V6nYCf9Dk6sbqPcHGYM_T--PA2f84Wr08v87tFZjitxwy4IG1tJC1p1ZZCtrblRNScN9xaRgVIVlSypiA1k00DlS0gLZrIqhVFejN0ve9dB_-5gTiq9DUDfa8H8JuoaFkkA1TWJKF0j5rgYwxg1Tq4lQ5bRYnaCVSdSgLVTqAiTCWBKXN1qN806cq_xK-xBNzuAUhHfjkIKhoHg0lGAphRtd79U_8N6qOAZQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1530951790</pqid></control><display><type>article</type><title>Decoration of silk fibroin by click chemistry for biomedical application</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Zhao, Hongshi ; Heusler, Eva ; Jones, Gabriel ; Li, Linhao ; Werner, Vera ; Germershaus, Oliver ; Ritzer, Jennifer ; Luehmann, Tessa ; Meinel, Lorenz</creator><creatorcontrib>Zhao, Hongshi ; Heusler, Eva ; Jones, Gabriel ; Li, Linhao ; Werner, Vera ; Germershaus, Oliver ; Ritzer, Jennifer ; Luehmann, Tessa ; Meinel, Lorenz</creatorcontrib><description>Silkfibroin (SF) has an excellent biocompatibility and its remarkable structure translates into exciting mechanical properties rendering this biomaterial particularly fascinating for biomedical application. To further boost the material’s biological/preclinical impact, SF is decorated with biologics, typically by carbodiimide/N-hydroxysuccinimide coupling (EDC/NHS). For biomedical application, this chemistry challenges the product risk profile due to the formation of covalent aggregates, particularly when decoration is with biologics occurring naturally in humans as these aggregates may prime for autoimmunity. Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC; click chemistry) provides the necessary specificity to avoid such intermolecular, covalent aggregates. We present a blueprint outlining the necessary chemistry rendering SF compatible with CuAAC and with a particular focus on structural consequences. For that, the number of SF carboxyl groups (carboxyl-SF; required for EDC/NHS chemistry) or azido groups (azido-SF; required for click chemistry) was tailored by means of diazonium coupling of the SF tyrosine residues. Structural impact on SF and decorated SF was characterized by Fourier transform infrared spectroscopy (FTIR). The click chemistry yielded a better controlled product as compared to the EDC/NHS chemistry with no formation of inter- and intramolecular crosslinks as demonstrated for SF decorated with fluorescent model compounds or a biologic, fibroblast growth factor 2 (FGF2), respectively. In conclusion, SF can readily be translated into a scaffold compatible with click chemistry yielding decorated products with a better risk profile for biomedical application.</description><identifier>ISSN: 1047-8477</identifier><identifier>EISSN: 1095-8657</identifier><identifier>DOI: 10.1016/j.jsb.2014.02.009</identifier><identifier>PMID: 24576682</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Azides - chemistry ; Click chemistry ; Click Chemistry - methods ; Copper - chemistry ; Decoration ; Diazonium Compounds - chemistry ; Fibroblast growth factor 2 ; Fibroblast Growth Factor 2 - genetics ; Fibroblast Growth Factor 2 - metabolism ; Fibroins - chemistry ; Polyethylene Glycols - chemistry ; Silk fibroin ; Spectroscopy, Fourier Transform Infrared</subject><ispartof>Journal of structural biology, 2014-06, Vol.186 (3), p.420-430</ispartof><rights>2014 Elsevier Inc.</rights><rights>Copyright © 2014 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-e460d9c71518d567dfd406944b4ff216e7238791e7a27bbe8f3e27ba078d63d63</citedby><cites>FETCH-LOGICAL-c419t-e460d9c71518d567dfd406944b4ff216e7238791e7a27bbe8f3e27ba078d63d63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1047847714000331$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24576682$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Hongshi</creatorcontrib><creatorcontrib>Heusler, Eva</creatorcontrib><creatorcontrib>Jones, Gabriel</creatorcontrib><creatorcontrib>Li, Linhao</creatorcontrib><creatorcontrib>Werner, Vera</creatorcontrib><creatorcontrib>Germershaus, Oliver</creatorcontrib><creatorcontrib>Ritzer, Jennifer</creatorcontrib><creatorcontrib>Luehmann, Tessa</creatorcontrib><creatorcontrib>Meinel, Lorenz</creatorcontrib><title>Decoration of silk fibroin by click chemistry for biomedical application</title><title>Journal of structural biology</title><addtitle>J Struct Biol</addtitle><description>Silkfibroin (SF) has an excellent biocompatibility and its remarkable structure translates into exciting mechanical properties rendering this biomaterial particularly fascinating for biomedical application. To further boost the material’s biological/preclinical impact, SF is decorated with biologics, typically by carbodiimide/N-hydroxysuccinimide coupling (EDC/NHS). For biomedical application, this chemistry challenges the product risk profile due to the formation of covalent aggregates, particularly when decoration is with biologics occurring naturally in humans as these aggregates may prime for autoimmunity. Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC; click chemistry) provides the necessary specificity to avoid such intermolecular, covalent aggregates. We present a blueprint outlining the necessary chemistry rendering SF compatible with CuAAC and with a particular focus on structural consequences. For that, the number of SF carboxyl groups (carboxyl-SF; required for EDC/NHS chemistry) or azido groups (azido-SF; required for click chemistry) was tailored by means of diazonium coupling of the SF tyrosine residues. Structural impact on SF and decorated SF was characterized by Fourier transform infrared spectroscopy (FTIR). The click chemistry yielded a better controlled product as compared to the EDC/NHS chemistry with no formation of inter- and intramolecular crosslinks as demonstrated for SF decorated with fluorescent model compounds or a biologic, fibroblast growth factor 2 (FGF2), respectively. In conclusion, SF can readily be translated into a scaffold compatible with click chemistry yielding decorated products with a better risk profile for biomedical application.</description><subject>Azides - chemistry</subject><subject>Click chemistry</subject><subject>Click Chemistry - methods</subject><subject>Copper - chemistry</subject><subject>Decoration</subject><subject>Diazonium Compounds - chemistry</subject><subject>Fibroblast growth factor 2</subject><subject>Fibroblast Growth Factor 2 - genetics</subject><subject>Fibroblast Growth Factor 2 - metabolism</subject><subject>Fibroins - chemistry</subject><subject>Polyethylene Glycols - chemistry</subject><subject>Silk fibroin</subject><subject>Spectroscopy, Fourier Transform Infrared</subject><issn>1047-8477</issn><issn>1095-8657</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kL1OwzAURi0EoqXwACzII0uC7Th2IiZUfqVKLDBbjnMtnKZxsVOkvj0uLYxIlu4dzvfJ9yB0SUlOCRU3Xd7FJmeE8pywnJD6CE0pqcusEqU83u1cZhWXcoLOYuwIIZwyeoomjJdSiIpN0fM9GB_06PyAvcXR9UtsXRO8G3CzxaZ3ZonNB6xcHMMWWx9w4_wKWmd0j_V6nYCf9Dk6sbqPcHGYM_T--PA2f84Wr08v87tFZjitxwy4IG1tJC1p1ZZCtrblRNScN9xaRgVIVlSypiA1k00DlS0gLZrIqhVFejN0ve9dB_-5gTiq9DUDfa8H8JuoaFkkA1TWJKF0j5rgYwxg1Tq4lQ5bRYnaCVSdSgLVTqAiTCWBKXN1qN806cq_xK-xBNzuAUhHfjkIKhoHg0lGAphRtd79U_8N6qOAZQ</recordid><startdate>20140601</startdate><enddate>20140601</enddate><creator>Zhao, Hongshi</creator><creator>Heusler, Eva</creator><creator>Jones, Gabriel</creator><creator>Li, Linhao</creator><creator>Werner, Vera</creator><creator>Germershaus, Oliver</creator><creator>Ritzer, Jennifer</creator><creator>Luehmann, Tessa</creator><creator>Meinel, Lorenz</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20140601</creationdate><title>Decoration of silk fibroin by click chemistry for biomedical application</title><author>Zhao, Hongshi ; Heusler, Eva ; Jones, Gabriel ; Li, Linhao ; Werner, Vera ; Germershaus, Oliver ; Ritzer, Jennifer ; Luehmann, Tessa ; Meinel, Lorenz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-e460d9c71518d567dfd406944b4ff216e7238791e7a27bbe8f3e27ba078d63d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Azides - chemistry</topic><topic>Click chemistry</topic><topic>Click Chemistry - methods</topic><topic>Copper - chemistry</topic><topic>Decoration</topic><topic>Diazonium Compounds - chemistry</topic><topic>Fibroblast growth factor 2</topic><topic>Fibroblast Growth Factor 2 - genetics</topic><topic>Fibroblast Growth Factor 2 - metabolism</topic><topic>Fibroins - chemistry</topic><topic>Polyethylene Glycols - chemistry</topic><topic>Silk fibroin</topic><topic>Spectroscopy, Fourier Transform Infrared</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Hongshi</creatorcontrib><creatorcontrib>Heusler, Eva</creatorcontrib><creatorcontrib>Jones, Gabriel</creatorcontrib><creatorcontrib>Li, Linhao</creatorcontrib><creatorcontrib>Werner, Vera</creatorcontrib><creatorcontrib>Germershaus, Oliver</creatorcontrib><creatorcontrib>Ritzer, Jennifer</creatorcontrib><creatorcontrib>Luehmann, Tessa</creatorcontrib><creatorcontrib>Meinel, Lorenz</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of structural biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Hongshi</au><au>Heusler, Eva</au><au>Jones, Gabriel</au><au>Li, Linhao</au><au>Werner, Vera</au><au>Germershaus, Oliver</au><au>Ritzer, Jennifer</au><au>Luehmann, Tessa</au><au>Meinel, Lorenz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Decoration of silk fibroin by click chemistry for biomedical application</atitle><jtitle>Journal of structural biology</jtitle><addtitle>J Struct Biol</addtitle><date>2014-06-01</date><risdate>2014</risdate><volume>186</volume><issue>3</issue><spage>420</spage><epage>430</epage><pages>420-430</pages><issn>1047-8477</issn><eissn>1095-8657</eissn><abstract>Silkfibroin (SF) has an excellent biocompatibility and its remarkable structure translates into exciting mechanical properties rendering this biomaterial particularly fascinating for biomedical application. To further boost the material’s biological/preclinical impact, SF is decorated with biologics, typically by carbodiimide/N-hydroxysuccinimide coupling (EDC/NHS). For biomedical application, this chemistry challenges the product risk profile due to the formation of covalent aggregates, particularly when decoration is with biologics occurring naturally in humans as these aggregates may prime for autoimmunity. Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC; click chemistry) provides the necessary specificity to avoid such intermolecular, covalent aggregates. We present a blueprint outlining the necessary chemistry rendering SF compatible with CuAAC and with a particular focus on structural consequences. For that, the number of SF carboxyl groups (carboxyl-SF; required for EDC/NHS chemistry) or azido groups (azido-SF; required for click chemistry) was tailored by means of diazonium coupling of the SF tyrosine residues. Structural impact on SF and decorated SF was characterized by Fourier transform infrared spectroscopy (FTIR). The click chemistry yielded a better controlled product as compared to the EDC/NHS chemistry with no formation of inter- and intramolecular crosslinks as demonstrated for SF decorated with fluorescent model compounds or a biologic, fibroblast growth factor 2 (FGF2), respectively. In conclusion, SF can readily be translated into a scaffold compatible with click chemistry yielding decorated products with a better risk profile for biomedical application.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>24576682</pmid><doi>10.1016/j.jsb.2014.02.009</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1047-8477
ispartof Journal of structural biology, 2014-06, Vol.186 (3), p.420-430
issn 1047-8477
1095-8657
language eng
recordid cdi_proquest_miscellaneous_1530951790
source MEDLINE; Elsevier ScienceDirect Journals
subjects Azides - chemistry
Click chemistry
Click Chemistry - methods
Copper - chemistry
Decoration
Diazonium Compounds - chemistry
Fibroblast growth factor 2
Fibroblast Growth Factor 2 - genetics
Fibroblast Growth Factor 2 - metabolism
Fibroins - chemistry
Polyethylene Glycols - chemistry
Silk fibroin
Spectroscopy, Fourier Transform Infrared
title Decoration of silk fibroin by click chemistry for biomedical application
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T03%3A20%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Decoration%20of%20silk%20fibroin%20by%20click%20chemistry%20for%20biomedical%20application&rft.jtitle=Journal%20of%20structural%20biology&rft.au=Zhao,%20Hongshi&rft.date=2014-06-01&rft.volume=186&rft.issue=3&rft.spage=420&rft.epage=430&rft.pages=420-430&rft.issn=1047-8477&rft.eissn=1095-8657&rft_id=info:doi/10.1016/j.jsb.2014.02.009&rft_dat=%3Cproquest_cross%3E1530951790%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1530951790&rft_id=info:pmid/24576682&rft_els_id=S1047847714000331&rfr_iscdi=true