Numerical simulation of tropical cumulus congestus during TOGA COARE
Recent observational studies of tropical deep convection typically include some mention of cumulus congestus, a third mode of tropical convection, in addition to shallow trade cumulus and deep convection. This study analyzes congestus behavior in a multiday cloud‐resolving model simulation based on...
Gespeichert in:
Veröffentlicht in: | Journal of advances in modeling earth systems 2013-07, Vol.5 (3), p.623-637 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 637 |
---|---|
container_issue | 3 |
container_start_page | 623 |
container_title | Journal of advances in modeling earth systems |
container_volume | 5 |
creator | Mechem, D. B. Oberthaler, A. J. |
description | Recent observational studies of tropical deep convection typically include some mention of cumulus congestus, a third mode of tropical convection, in addition to shallow trade cumulus and deep convection. This study analyzes congestus behavior in a multiday cloud‐resolving model simulation based on the Tropical Ocean‐Global Atmosphere Coupled Ocean‐Atmosphere Response Experiment (TOGA COARE) field campaign. Simulation results exhibit a pronounced congestus cloud mode, present during both suppressed and active phases of the intraseasonal oscillation (ISO), with a unique signature consistent with cloudy‐air detrainment near the 0°C isotherm. Congestus clouds in the simulation contribute 34% of the total precipitation during a 10 day transition period from suppressed to active phases, a number which corresponds well with previous estimates of the congestus contribution to precipitation. Domain‐mean profiles and statistics from conditionally sampled buoyant cloud cores are compared with similar quantities from a recent model intercomparison of RICO trade cumulus. In many respects, cumulus congestus act like overgrown trade cumulus clouds. Both cloud types demonstrate multiple cloud fraction maxima associated with cloud base and detrainment layers. Profiles of buoyancy flux and vertical velocity variance suggest that the buoyancy production of turbulence behaves similarly in both cloud types. The greater precipitation production in the simulated congestus clouds nearly balances the surface latent heat flux, and thus the congestus contribution to moistening the atmosphere is limited. The computational configuration is a compromise between providing both sufficient resolution to represent shallow cumulus and sufficient domain size to handle broader, deep convective clouds.
Key Points
Congestus clouds contribute 34% of simulated tropical precipitation.
Congestus precipitation is sensitive to how congestus clouds are defined.
Congestus exhibit many similarities with ordinary trade cumulus. |
doi_str_mv | 10.1002/jame.20043 |
format | Article |
fullrecord | <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_proquest_miscellaneous_1529954851</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2299144803</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3003-1e634a75941508a9f2ed7b03fa92710b9a76489b81da7e961e00a4bcb19735e63</originalsourceid><addsrcrecordid>eNp9kMFLwzAYxYMoOKcX_4KCFxE6v6Rp2hzLrFOZDmSeQ9qlI6NtZrIg--_NVg_iwdP3ePzex-MhdI1hggHI_UZ2akIAaHKCRphTEhPK2OkvfY4unNsAMMZIOkIPb75TVteyjZzufCt32vSRaaKdNdujXftgexfVpl8rtwtq5a3u19FyMSui6aJ4Ly_RWSNbp65-7hh9PJbL6VM8X8yep8U8rhOAJMaKJVRmKac4hVzyhqhVVkHSSE4yDBWXGaM5r3K8kpniDCsASau6wjxL0hAeo9vh79aaTx_KiE67WrWt7JXxTuCUcJ7SPMUBvfmDboy3fWgnSIAwpTkkgbobqNoa56xqxNbqTtq9wCAOg4rDoOI4aIDxAH_pVu3_IcVL8VoOmW9nfXXS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2299144803</pqid></control><display><type>article</type><title>Numerical simulation of tropical cumulus congestus during TOGA COARE</title><source>Wiley Open Access Journals</source><creator>Mechem, D. B. ; Oberthaler, A. J.</creator><creatorcontrib>Mechem, D. B. ; Oberthaler, A. J.</creatorcontrib><description>Recent observational studies of tropical deep convection typically include some mention of cumulus congestus, a third mode of tropical convection, in addition to shallow trade cumulus and deep convection. This study analyzes congestus behavior in a multiday cloud‐resolving model simulation based on the Tropical Ocean‐Global Atmosphere Coupled Ocean‐Atmosphere Response Experiment (TOGA COARE) field campaign. Simulation results exhibit a pronounced congestus cloud mode, present during both suppressed and active phases of the intraseasonal oscillation (ISO), with a unique signature consistent with cloudy‐air detrainment near the 0°C isotherm. Congestus clouds in the simulation contribute 34% of the total precipitation during a 10 day transition period from suppressed to active phases, a number which corresponds well with previous estimates of the congestus contribution to precipitation. Domain‐mean profiles and statistics from conditionally sampled buoyant cloud cores are compared with similar quantities from a recent model intercomparison of RICO trade cumulus. In many respects, cumulus congestus act like overgrown trade cumulus clouds. Both cloud types demonstrate multiple cloud fraction maxima associated with cloud base and detrainment layers. Profiles of buoyancy flux and vertical velocity variance suggest that the buoyancy production of turbulence behaves similarly in both cloud types. The greater precipitation production in the simulated congestus clouds nearly balances the surface latent heat flux, and thus the congestus contribution to moistening the atmosphere is limited. The computational configuration is a compromise between providing both sufficient resolution to represent shallow cumulus and sufficient domain size to handle broader, deep convective clouds.
Key Points
Congestus clouds contribute 34% of simulated tropical precipitation.
Congestus precipitation is sensitive to how congestus clouds are defined.
Congestus exhibit many similarities with ordinary trade cumulus.</description><identifier>ISSN: 1942-2466</identifier><identifier>EISSN: 1942-2466</identifier><identifier>DOI: 10.1002/jame.20043</identifier><language>eng</language><publisher>Washington: John Wiley & Sons, Inc</publisher><subject>Atmosphere ; Buoyancy ; Buoyancy flux ; Cloud types ; Clouds ; congestus ; Convection ; Convective clouds ; Cumulus clouds ; Cumulus congestus ; Detrainment ; Heat transfer ; Intercomparison ; Intraseasonal oscillation ; Latent heat ; Latent heat flux ; MJO ; Numerical simulations ; Observational studies ; Oceans ; Precipitation ; Profiles ; Simulation ; Statistical methods ; Studies ; Trade ; trade cumulus ; Tropical atmosphere ; Tropical climate ; Tropical convection ; Turbulence ; Vertical velocities ; warm‐rain process</subject><ispartof>Journal of advances in modeling earth systems, 2013-07, Vol.5 (3), p.623-637</ispartof><rights>2013. American Geophysical Union. All Rights Reserved.</rights><rights>2013. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3003-1e634a75941508a9f2ed7b03fa92710b9a76489b81da7e961e00a4bcb19735e63</citedby><cites>FETCH-LOGICAL-c3003-1e634a75941508a9f2ed7b03fa92710b9a76489b81da7e961e00a4bcb19735e63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjame.20043$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjame.20043$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,864,1417,11562,27924,27925,45574,45575,46052,46476</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjame.20043$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc></links><search><creatorcontrib>Mechem, D. B.</creatorcontrib><creatorcontrib>Oberthaler, A. J.</creatorcontrib><title>Numerical simulation of tropical cumulus congestus during TOGA COARE</title><title>Journal of advances in modeling earth systems</title><description>Recent observational studies of tropical deep convection typically include some mention of cumulus congestus, a third mode of tropical convection, in addition to shallow trade cumulus and deep convection. This study analyzes congestus behavior in a multiday cloud‐resolving model simulation based on the Tropical Ocean‐Global Atmosphere Coupled Ocean‐Atmosphere Response Experiment (TOGA COARE) field campaign. Simulation results exhibit a pronounced congestus cloud mode, present during both suppressed and active phases of the intraseasonal oscillation (ISO), with a unique signature consistent with cloudy‐air detrainment near the 0°C isotherm. Congestus clouds in the simulation contribute 34% of the total precipitation during a 10 day transition period from suppressed to active phases, a number which corresponds well with previous estimates of the congestus contribution to precipitation. Domain‐mean profiles and statistics from conditionally sampled buoyant cloud cores are compared with similar quantities from a recent model intercomparison of RICO trade cumulus. In many respects, cumulus congestus act like overgrown trade cumulus clouds. Both cloud types demonstrate multiple cloud fraction maxima associated with cloud base and detrainment layers. Profiles of buoyancy flux and vertical velocity variance suggest that the buoyancy production of turbulence behaves similarly in both cloud types. The greater precipitation production in the simulated congestus clouds nearly balances the surface latent heat flux, and thus the congestus contribution to moistening the atmosphere is limited. The computational configuration is a compromise between providing both sufficient resolution to represent shallow cumulus and sufficient domain size to handle broader, deep convective clouds.
Key Points
Congestus clouds contribute 34% of simulated tropical precipitation.
Congestus precipitation is sensitive to how congestus clouds are defined.
Congestus exhibit many similarities with ordinary trade cumulus.</description><subject>Atmosphere</subject><subject>Buoyancy</subject><subject>Buoyancy flux</subject><subject>Cloud types</subject><subject>Clouds</subject><subject>congestus</subject><subject>Convection</subject><subject>Convective clouds</subject><subject>Cumulus clouds</subject><subject>Cumulus congestus</subject><subject>Detrainment</subject><subject>Heat transfer</subject><subject>Intercomparison</subject><subject>Intraseasonal oscillation</subject><subject>Latent heat</subject><subject>Latent heat flux</subject><subject>MJO</subject><subject>Numerical simulations</subject><subject>Observational studies</subject><subject>Oceans</subject><subject>Precipitation</subject><subject>Profiles</subject><subject>Simulation</subject><subject>Statistical methods</subject><subject>Studies</subject><subject>Trade</subject><subject>trade cumulus</subject><subject>Tropical atmosphere</subject><subject>Tropical climate</subject><subject>Tropical convection</subject><subject>Turbulence</subject><subject>Vertical velocities</subject><subject>warm‐rain process</subject><issn>1942-2466</issn><issn>1942-2466</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kMFLwzAYxYMoOKcX_4KCFxE6v6Rp2hzLrFOZDmSeQ9qlI6NtZrIg--_NVg_iwdP3ePzex-MhdI1hggHI_UZ2akIAaHKCRphTEhPK2OkvfY4unNsAMMZIOkIPb75TVteyjZzufCt32vSRaaKdNdujXftgexfVpl8rtwtq5a3u19FyMSui6aJ4Ly_RWSNbp65-7hh9PJbL6VM8X8yep8U8rhOAJMaKJVRmKac4hVzyhqhVVkHSSE4yDBWXGaM5r3K8kpniDCsASau6wjxL0hAeo9vh79aaTx_KiE67WrWt7JXxTuCUcJ7SPMUBvfmDboy3fWgnSIAwpTkkgbobqNoa56xqxNbqTtq9wCAOg4rDoOI4aIDxAH_pVu3_IcVL8VoOmW9nfXXS</recordid><startdate>20130701</startdate><enddate>20130701</enddate><creator>Mechem, D. B.</creator><creator>Oberthaler, A. J.</creator><general>John Wiley & Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20130701</creationdate><title>Numerical simulation of tropical cumulus congestus during TOGA COARE</title><author>Mechem, D. B. ; Oberthaler, A. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3003-1e634a75941508a9f2ed7b03fa92710b9a76489b81da7e961e00a4bcb19735e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Atmosphere</topic><topic>Buoyancy</topic><topic>Buoyancy flux</topic><topic>Cloud types</topic><topic>Clouds</topic><topic>congestus</topic><topic>Convection</topic><topic>Convective clouds</topic><topic>Cumulus clouds</topic><topic>Cumulus congestus</topic><topic>Detrainment</topic><topic>Heat transfer</topic><topic>Intercomparison</topic><topic>Intraseasonal oscillation</topic><topic>Latent heat</topic><topic>Latent heat flux</topic><topic>MJO</topic><topic>Numerical simulations</topic><topic>Observational studies</topic><topic>Oceans</topic><topic>Precipitation</topic><topic>Profiles</topic><topic>Simulation</topic><topic>Statistical methods</topic><topic>Studies</topic><topic>Trade</topic><topic>trade cumulus</topic><topic>Tropical atmosphere</topic><topic>Tropical climate</topic><topic>Tropical convection</topic><topic>Turbulence</topic><topic>Vertical velocities</topic><topic>warm‐rain process</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mechem, D. B.</creatorcontrib><creatorcontrib>Oberthaler, A. J.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Journal of advances in modeling earth systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mechem, D. B.</au><au>Oberthaler, A. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical simulation of tropical cumulus congestus during TOGA COARE</atitle><jtitle>Journal of advances in modeling earth systems</jtitle><date>2013-07-01</date><risdate>2013</risdate><volume>5</volume><issue>3</issue><spage>623</spage><epage>637</epage><pages>623-637</pages><issn>1942-2466</issn><eissn>1942-2466</eissn><abstract>Recent observational studies of tropical deep convection typically include some mention of cumulus congestus, a third mode of tropical convection, in addition to shallow trade cumulus and deep convection. This study analyzes congestus behavior in a multiday cloud‐resolving model simulation based on the Tropical Ocean‐Global Atmosphere Coupled Ocean‐Atmosphere Response Experiment (TOGA COARE) field campaign. Simulation results exhibit a pronounced congestus cloud mode, present during both suppressed and active phases of the intraseasonal oscillation (ISO), with a unique signature consistent with cloudy‐air detrainment near the 0°C isotherm. Congestus clouds in the simulation contribute 34% of the total precipitation during a 10 day transition period from suppressed to active phases, a number which corresponds well with previous estimates of the congestus contribution to precipitation. Domain‐mean profiles and statistics from conditionally sampled buoyant cloud cores are compared with similar quantities from a recent model intercomparison of RICO trade cumulus. In many respects, cumulus congestus act like overgrown trade cumulus clouds. Both cloud types demonstrate multiple cloud fraction maxima associated with cloud base and detrainment layers. Profiles of buoyancy flux and vertical velocity variance suggest that the buoyancy production of turbulence behaves similarly in both cloud types. The greater precipitation production in the simulated congestus clouds nearly balances the surface latent heat flux, and thus the congestus contribution to moistening the atmosphere is limited. The computational configuration is a compromise between providing both sufficient resolution to represent shallow cumulus and sufficient domain size to handle broader, deep convective clouds.
Key Points
Congestus clouds contribute 34% of simulated tropical precipitation.
Congestus precipitation is sensitive to how congestus clouds are defined.
Congestus exhibit many similarities with ordinary trade cumulus.</abstract><cop>Washington</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/jame.20043</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1942-2466 |
ispartof | Journal of advances in modeling earth systems, 2013-07, Vol.5 (3), p.623-637 |
issn | 1942-2466 1942-2466 |
language | eng |
recordid | cdi_proquest_miscellaneous_1529954851 |
source | Wiley Open Access Journals |
subjects | Atmosphere Buoyancy Buoyancy flux Cloud types Clouds congestus Convection Convective clouds Cumulus clouds Cumulus congestus Detrainment Heat transfer Intercomparison Intraseasonal oscillation Latent heat Latent heat flux MJO Numerical simulations Observational studies Oceans Precipitation Profiles Simulation Statistical methods Studies Trade trade cumulus Tropical atmosphere Tropical climate Tropical convection Turbulence Vertical velocities warm‐rain process |
title | Numerical simulation of tropical cumulus congestus during TOGA COARE |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T18%3A56%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20simulation%20of%20tropical%20cumulus%20congestus%20during%20TOGA%20COARE&rft.jtitle=Journal%20of%20advances%20in%20modeling%20earth%20systems&rft.au=Mechem,%20D.%20B.&rft.date=2013-07-01&rft.volume=5&rft.issue=3&rft.spage=623&rft.epage=637&rft.pages=623-637&rft.issn=1942-2466&rft.eissn=1942-2466&rft_id=info:doi/10.1002/jame.20043&rft_dat=%3Cproquest_24P%3E2299144803%3C/proquest_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2299144803&rft_id=info:pmid/&rfr_iscdi=true |