Observations of near-surface fog at the Phoenix Mars landing site
The Surface Stereo Imager (SSI) on the Phoenix Mars Lander was able to complement the operations of the LIDAR on four occasions during the mission by observing the laser beam while the LIDAR laser was transmitting. These SSI observations permitted measurement of the scatter from atmospheric aerosols...
Gespeichert in:
Veröffentlicht in: | Geophysical research letters 2011-02, Vol.38 (4), p.np-n/a |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 4 |
container_start_page | np |
container_title | Geophysical research letters |
container_volume | 38 |
creator | Moores, John E. Komguem, Léonce Whiteway, James A. Lemmon, Mark T. Dickinson, Cameron Daerden, Frank |
description | The Surface Stereo Imager (SSI) on the Phoenix Mars Lander was able to complement the operations of the LIDAR on four occasions during the mission by observing the laser beam while the LIDAR laser was transmitting. These SSI observations permitted measurement of the scatter from atmospheric aerosols below 200 m where the LIDAR emitter and receiver do not overlap fully. The observed laser scattering was used to estimate the ice‐water content (IWC) of near surface fog. Values of IWC up to 1.7 ± 1.0 mg m−3 were observed. Compared to air aloft, fog formation was inhibited near the surface which had accumulated at least 30 ± 24 mg m−2 (0.030 pr‐μm) on sol 113. Microphysical modeling shows that when precipitation is included, up to 0.48 pr‐μm of water may be present on the surface at the time of measurement. Integrated over the entire night, this represents up to 2.5 pr‐μm of water taken up diurnally by the surface, or 6% of the total water column. |
doi_str_mv | 10.1029/2010GL046315 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_1529946073</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2704187291</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3706-d545aeb7ac8c046a30a49012fb776e8970b2ceddbbd48b76295b108e80a867dc3</originalsourceid><addsrcrecordid>eNpdkF1LHDEUhoNUcLvtnT8gIAVvpj1JZvJxKYvdbRmrLHW9DGcyGY0dZzSZbfXfm7Ii4tU5cJ738PAScsjgKwNuvnFgsKyhlIJVe2TGTFkWGkB9IDMAk3eu5AH5mNItAAgQbEZOzpvk41-cwjgkOnZ08BiLtI0dOk-78ZriRKcbTy9uRj-ER3qGMdEehzYM1zSFyX8i-x32yX9-mXNy-f3092JV1OfLH4uTunBCgSzaqqzQNwqddtkQBWBpgPGuUUp6bRQ03Pm2bZq21I2S3FQNA-01oJaqdWJOjnd_7-P4sPVpsnchOd9nFz9uk2UVN6aUoERGj96ht-M2DtnO5p6EqoTSOlNfXihMDvsu4uBCsvcx3GF8slznylRm54TvuH-h90-vdwb_nxn7tnS7XNdcaZA5VOxCIU3-8TWE8Y-VKhvYq19Lu9rU683PamFr8Qxfo4Lb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1023753788</pqid></control><display><type>article</type><title>Observations of near-surface fog at the Phoenix Mars landing site</title><source>Wiley Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><creator>Moores, John E. ; Komguem, Léonce ; Whiteway, James A. ; Lemmon, Mark T. ; Dickinson, Cameron ; Daerden, Frank</creator><creatorcontrib>Moores, John E. ; Komguem, Léonce ; Whiteway, James A. ; Lemmon, Mark T. ; Dickinson, Cameron ; Daerden, Frank</creatorcontrib><description>The Surface Stereo Imager (SSI) on the Phoenix Mars Lander was able to complement the operations of the LIDAR on four occasions during the mission by observing the laser beam while the LIDAR laser was transmitting. These SSI observations permitted measurement of the scatter from atmospheric aerosols below 200 m where the LIDAR emitter and receiver do not overlap fully. The observed laser scattering was used to estimate the ice‐water content (IWC) of near surface fog. Values of IWC up to 1.7 ± 1.0 mg m−3 were observed. Compared to air aloft, fog formation was inhibited near the surface which had accumulated at least 30 ± 24 mg m−2 (0.030 pr‐μm) on sol 113. Microphysical modeling shows that when precipitation is included, up to 0.48 pr‐μm of water may be present on the surface at the time of measurement. Integrated over the entire night, this represents up to 2.5 pr‐μm of water taken up diurnally by the surface, or 6% of the total water column.</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1029/2010GL046315</identifier><identifier>CODEN: GPRLAJ</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>Aerosols ; Atmosphere ; Atmospheric sciences ; Atmospherics ; Clouds ; Complement ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Fog ; Geophysics ; Lasers ; Lidar ; Mars ; Phoenix ; Planetology ; Planets ; Scientific apparatus & instruments ; water ; Water circulation ; Water column ; Water content</subject><ispartof>Geophysical research letters, 2011-02, Vol.38 (4), p.np-n/a</ispartof><rights>Copyright 2011 by the American Geophysical Union.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright 2011 by the American Geophysical Union</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3706-d545aeb7ac8c046a30a49012fb776e8970b2ceddbbd48b76295b108e80a867dc3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2010GL046315$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2010GL046315$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,11514,27924,27925,45574,45575,46409,46468,46833,46892</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28094775$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Moores, John E.</creatorcontrib><creatorcontrib>Komguem, Léonce</creatorcontrib><creatorcontrib>Whiteway, James A.</creatorcontrib><creatorcontrib>Lemmon, Mark T.</creatorcontrib><creatorcontrib>Dickinson, Cameron</creatorcontrib><creatorcontrib>Daerden, Frank</creatorcontrib><title>Observations of near-surface fog at the Phoenix Mars landing site</title><title>Geophysical research letters</title><addtitle>Geophys. Res. Lett</addtitle><description>The Surface Stereo Imager (SSI) on the Phoenix Mars Lander was able to complement the operations of the LIDAR on four occasions during the mission by observing the laser beam while the LIDAR laser was transmitting. These SSI observations permitted measurement of the scatter from atmospheric aerosols below 200 m where the LIDAR emitter and receiver do not overlap fully. The observed laser scattering was used to estimate the ice‐water content (IWC) of near surface fog. Values of IWC up to 1.7 ± 1.0 mg m−3 were observed. Compared to air aloft, fog formation was inhibited near the surface which had accumulated at least 30 ± 24 mg m−2 (0.030 pr‐μm) on sol 113. Microphysical modeling shows that when precipitation is included, up to 0.48 pr‐μm of water may be present on the surface at the time of measurement. Integrated over the entire night, this represents up to 2.5 pr‐μm of water taken up diurnally by the surface, or 6% of the total water column.</description><subject>Aerosols</subject><subject>Atmosphere</subject><subject>Atmospheric sciences</subject><subject>Atmospherics</subject><subject>Clouds</subject><subject>Complement</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Fog</subject><subject>Geophysics</subject><subject>Lasers</subject><subject>Lidar</subject><subject>Mars</subject><subject>Phoenix</subject><subject>Planetology</subject><subject>Planets</subject><subject>Scientific apparatus & instruments</subject><subject>water</subject><subject>Water circulation</subject><subject>Water column</subject><subject>Water content</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkF1LHDEUhoNUcLvtnT8gIAVvpj1JZvJxKYvdbRmrLHW9DGcyGY0dZzSZbfXfm7Ii4tU5cJ738PAScsjgKwNuvnFgsKyhlIJVe2TGTFkWGkB9IDMAk3eu5AH5mNItAAgQbEZOzpvk41-cwjgkOnZ08BiLtI0dOk-78ZriRKcbTy9uRj-ER3qGMdEehzYM1zSFyX8i-x32yX9-mXNy-f3092JV1OfLH4uTunBCgSzaqqzQNwqddtkQBWBpgPGuUUp6bRQ03Pm2bZq21I2S3FQNA-01oJaqdWJOjnd_7-P4sPVpsnchOd9nFz9uk2UVN6aUoERGj96ht-M2DtnO5p6EqoTSOlNfXihMDvsu4uBCsvcx3GF8slznylRm54TvuH-h90-vdwb_nxn7tnS7XNdcaZA5VOxCIU3-8TWE8Y-VKhvYq19Lu9rU683PamFr8Qxfo4Lb</recordid><startdate>201102</startdate><enddate>201102</enddate><creator>Moores, John E.</creator><creator>Komguem, Léonce</creator><creator>Whiteway, James A.</creator><creator>Lemmon, Mark T.</creator><creator>Dickinson, Cameron</creator><creator>Daerden, Frank</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><general>John Wiley & Sons, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>201102</creationdate><title>Observations of near-surface fog at the Phoenix Mars landing site</title><author>Moores, John E. ; Komguem, Léonce ; Whiteway, James A. ; Lemmon, Mark T. ; Dickinson, Cameron ; Daerden, Frank</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3706-d545aeb7ac8c046a30a49012fb776e8970b2ceddbbd48b76295b108e80a867dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Aerosols</topic><topic>Atmosphere</topic><topic>Atmospheric sciences</topic><topic>Atmospherics</topic><topic>Clouds</topic><topic>Complement</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Fog</topic><topic>Geophysics</topic><topic>Lasers</topic><topic>Lidar</topic><topic>Mars</topic><topic>Phoenix</topic><topic>Planetology</topic><topic>Planets</topic><topic>Scientific apparatus & instruments</topic><topic>water</topic><topic>Water circulation</topic><topic>Water column</topic><topic>Water content</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moores, John E.</creatorcontrib><creatorcontrib>Komguem, Léonce</creatorcontrib><creatorcontrib>Whiteway, James A.</creatorcontrib><creatorcontrib>Lemmon, Mark T.</creatorcontrib><creatorcontrib>Dickinson, Cameron</creatorcontrib><creatorcontrib>Daerden, Frank</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moores, John E.</au><au>Komguem, Léonce</au><au>Whiteway, James A.</au><au>Lemmon, Mark T.</au><au>Dickinson, Cameron</au><au>Daerden, Frank</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Observations of near-surface fog at the Phoenix Mars landing site</atitle><jtitle>Geophysical research letters</jtitle><addtitle>Geophys. Res. Lett</addtitle><date>2011-02</date><risdate>2011</risdate><volume>38</volume><issue>4</issue><spage>np</spage><epage>n/a</epage><pages>np-n/a</pages><issn>0094-8276</issn><eissn>1944-8007</eissn><coden>GPRLAJ</coden><abstract>The Surface Stereo Imager (SSI) on the Phoenix Mars Lander was able to complement the operations of the LIDAR on four occasions during the mission by observing the laser beam while the LIDAR laser was transmitting. These SSI observations permitted measurement of the scatter from atmospheric aerosols below 200 m where the LIDAR emitter and receiver do not overlap fully. The observed laser scattering was used to estimate the ice‐water content (IWC) of near surface fog. Values of IWC up to 1.7 ± 1.0 mg m−3 were observed. Compared to air aloft, fog formation was inhibited near the surface which had accumulated at least 30 ± 24 mg m−2 (0.030 pr‐μm) on sol 113. Microphysical modeling shows that when precipitation is included, up to 0.48 pr‐μm of water may be present on the surface at the time of measurement. Integrated over the entire night, this represents up to 2.5 pr‐μm of water taken up diurnally by the surface, or 6% of the total water column.</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2010GL046315</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-8276 |
ispartof | Geophysical research letters, 2011-02, Vol.38 (4), p.np-n/a |
issn | 0094-8276 1944-8007 |
language | eng |
recordid | cdi_proquest_miscellaneous_1529946073 |
source | Wiley Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Free Content; Wiley-Blackwell AGU Digital Library |
subjects | Aerosols Atmosphere Atmospheric sciences Atmospherics Clouds Complement Earth sciences Earth, ocean, space Exact sciences and technology Fog Geophysics Lasers Lidar Mars Phoenix Planetology Planets Scientific apparatus & instruments water Water circulation Water column Water content |
title | Observations of near-surface fog at the Phoenix Mars landing site |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T23%3A01%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Observations%20of%20near-surface%20fog%20at%20the%20Phoenix%20Mars%20landing%20site&rft.jtitle=Geophysical%20research%20letters&rft.au=Moores,%20John%20E.&rft.date=2011-02&rft.volume=38&rft.issue=4&rft.spage=np&rft.epage=n/a&rft.pages=np-n/a&rft.issn=0094-8276&rft.eissn=1944-8007&rft.coden=GPRLAJ&rft_id=info:doi/10.1029/2010GL046315&rft_dat=%3Cproquest_pasca%3E2704187291%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1023753788&rft_id=info:pmid/&rfr_iscdi=true |