Describing the Shape of Raindrop Size Distributions Using Uncorrelated Raindrop Mass Spectrum Parameters
Rainfall retrieval algorithms often assume a gamma-shaped raindrop size distribution (DSD) with three mathematical parametersNw ,Dm , andμ. If only two independent measurements are available, as with the dual-frequency precipitation radar on the Global Precipitation Measurement (GPM) mission core sa...
Gespeichert in:
Veröffentlicht in: | Journal of applied meteorology and climatology 2014-05, Vol.53 (5), p.1282-1296 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1296 |
---|---|
container_issue | 5 |
container_start_page | 1282 |
container_title | Journal of applied meteorology and climatology |
container_volume | 53 |
creator | Williams, Christopher R. Bringi, V. N. Carey, Lawrence D. Chandrasekar, V. Gatlin, Patrick N. Haddad, Ziad S. Meneghini, Robert Munchak, S. Joseph Nesbitt, Stephen W. Petersen, Walter A. Tanelli, Simone Tokay, Ali Wilson, Anna Wolff, David B. |
description | Rainfall retrieval algorithms often assume a gamma-shaped raindrop size distribution (DSD) with three mathematical parametersNw
,Dm
, andμ. If only two independent measurements are available, as with the dual-frequency precipitation radar on the Global Precipitation Measurement (GPM) mission core satellite, then retrieval algorithms are underconstrained and require assumptions about DSD parameters. To reduce the number of free parameters, algorithms can assume thatμis either a constant or a function ofDm
. Previous studies have suggestedμ–Λ constraints [where Λ 5 (4 +μ)/DDm
], but controversies exist over whetherμ–Λ constraints result from physical processes or mathematical artifacts due to high correlations between gamma DSD parameters. This study avoids mathematical artifacts by developing joint probability distribution functions (joint PDFs) of statistically independent DSD attributes derived from the raindrop mass spectrum. These joint PDFs are then mapped into gamma-shaped DSD parameter joint PDFs that can be used in probabilistic rainfall retrieval algorithms as proposed for the GPM satellite program. Surface disdrometer data show a high correlation coefficient between the mass spectrum mean diameterDm
and mass spectrum standard deviationσm
. To remove correlations between DSD attributes, a normalized mass spectrum standard deviation
σ
m
'
is constructed to be statistically independent ofDm
, with
σ
m
'
¯
representing the most likely value and
std
(
σ
m
'
)
representing its dispersion. Joint PDFs ofDm
andμare created fromDm
and
σ
m
'
. A simple algorithm shows that rain-rate estimates had smaller biases when assuming the DSD breadth of
σ
m
'
¯
than when assuming a constantμ. |
doi_str_mv | 10.1175/jamc-d-13-076.1 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1529932151</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26176369</jstor_id><sourcerecordid>26176369</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-1491fe17427a567fde1255050bb42afa27eaa67c0a2c5085fda3cd0324721ce13</originalsourceid><addsrcrecordid>eNpd0E1r20AQBmBREmi-zj0FFnrJRcnOfmjto7GTJsUmIa7Py3g1qmUsrbK7OiS_vjIOLuQ0c3jmZXiz7AfwWwCj77bYuLzMQebcFLfwLTsDrUf5SElxctyF-p6dx7jlXClj9Fm2mVF0oV7X7V-WNsSWG-yI-Yq9Yt2WwXdsWX8Qm9UxDapPtW8jW8U9X7XOh0A7TFT-5wuMkS07cin0DXvBgA0lCvEyO61wF-nqc15kq4f7P9PHfP7862k6medOSUg5qDFUBEYJg7owVUkgtOaar9dKYIXCEGJhHEfhNB_pqkTpSi6FMgIcgbzIbg65XfBvPcVkmzo62u2wJd9HC1qMx1KA3tOfX-jW96EdvhuU1MKIQvBB3R2UCz7GQJXtQt1geLfA7b55-3uymNqZBWmH5u0-9_pwsY3JhyMXBZhCFmP5D6i1gRM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1535272620</pqid></control><display><type>article</type><title>Describing the Shape of Raindrop Size Distributions Using Uncorrelated Raindrop Mass Spectrum Parameters</title><source>Jstor Complete Legacy</source><source>American Meteorological Society</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><creator>Williams, Christopher R. ; Bringi, V. N. ; Carey, Lawrence D. ; Chandrasekar, V. ; Gatlin, Patrick N. ; Haddad, Ziad S. ; Meneghini, Robert ; Munchak, S. Joseph ; Nesbitt, Stephen W. ; Petersen, Walter A. ; Tanelli, Simone ; Tokay, Ali ; Wilson, Anna ; Wolff, David B.</creator><creatorcontrib>Williams, Christopher R. ; Bringi, V. N. ; Carey, Lawrence D. ; Chandrasekar, V. ; Gatlin, Patrick N. ; Haddad, Ziad S. ; Meneghini, Robert ; Munchak, S. Joseph ; Nesbitt, Stephen W. ; Petersen, Walter A. ; Tanelli, Simone ; Tokay, Ali ; Wilson, Anna ; Wolff, David B.</creatorcontrib><description>Rainfall retrieval algorithms often assume a gamma-shaped raindrop size distribution (DSD) with three mathematical parametersNw
,Dm
, andμ. If only two independent measurements are available, as with the dual-frequency precipitation radar on the Global Precipitation Measurement (GPM) mission core satellite, then retrieval algorithms are underconstrained and require assumptions about DSD parameters. To reduce the number of free parameters, algorithms can assume thatμis either a constant or a function ofDm
. Previous studies have suggestedμ–Λ constraints [where Λ 5 (4 +μ)/DDm
], but controversies exist over whetherμ–Λ constraints result from physical processes or mathematical artifacts due to high correlations between gamma DSD parameters. This study avoids mathematical artifacts by developing joint probability distribution functions (joint PDFs) of statistically independent DSD attributes derived from the raindrop mass spectrum. These joint PDFs are then mapped into gamma-shaped DSD parameter joint PDFs that can be used in probabilistic rainfall retrieval algorithms as proposed for the GPM satellite program. Surface disdrometer data show a high correlation coefficient between the mass spectrum mean diameterDm
and mass spectrum standard deviationσm
. To remove correlations between DSD attributes, a normalized mass spectrum standard deviation
σ
m
'
is constructed to be statistically independent ofDm
, with
σ
m
'
¯
representing the most likely value and
std
(
σ
m
'
)
representing its dispersion. Joint PDFs ofDm
andμare created fromDm
and
σ
m
'
. A simple algorithm shows that rain-rate estimates had smaller biases when assuming the DSD breadth of
σ
m
'
¯
than when assuming a constantμ.</description><identifier>ISSN: 1558-8424</identifier><identifier>EISSN: 1558-8432</identifier><identifier>DOI: 10.1175/jamc-d-13-076.1</identifier><identifier>CODEN: JOAMEZ</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Algorithms ; Correlation coefficient ; Expected values ; Gamma function ; Mass spectra ; Mathematical analysis ; Mathematical independent variables ; Meteorology ; Precipitation ; Probability density functions ; Probability distribution ; Radar ; Radar echoes ; Rain ; Raindrops ; Rainfall ; Reflectance ; Retrieval ; Standard deviation ; Studies</subject><ispartof>Journal of applied meteorology and climatology, 2014-05, Vol.53 (5), p.1282-1296</ispartof><rights>2014 American Meteorological Society</rights><rights>Copyright American Meteorological Society May 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c431t-1491fe17427a567fde1255050bb42afa27eaa67c0a2c5085fda3cd0324721ce13</citedby><cites>FETCH-LOGICAL-c431t-1491fe17427a567fde1255050bb42afa27eaa67c0a2c5085fda3cd0324721ce13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26176369$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26176369$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,3668,27903,27904,57995,58228</link.rule.ids></links><search><creatorcontrib>Williams, Christopher R.</creatorcontrib><creatorcontrib>Bringi, V. N.</creatorcontrib><creatorcontrib>Carey, Lawrence D.</creatorcontrib><creatorcontrib>Chandrasekar, V.</creatorcontrib><creatorcontrib>Gatlin, Patrick N.</creatorcontrib><creatorcontrib>Haddad, Ziad S.</creatorcontrib><creatorcontrib>Meneghini, Robert</creatorcontrib><creatorcontrib>Munchak, S. Joseph</creatorcontrib><creatorcontrib>Nesbitt, Stephen W.</creatorcontrib><creatorcontrib>Petersen, Walter A.</creatorcontrib><creatorcontrib>Tanelli, Simone</creatorcontrib><creatorcontrib>Tokay, Ali</creatorcontrib><creatorcontrib>Wilson, Anna</creatorcontrib><creatorcontrib>Wolff, David B.</creatorcontrib><title>Describing the Shape of Raindrop Size Distributions Using Uncorrelated Raindrop Mass Spectrum Parameters</title><title>Journal of applied meteorology and climatology</title><description>Rainfall retrieval algorithms often assume a gamma-shaped raindrop size distribution (DSD) with three mathematical parametersNw
,Dm
, andμ. If only two independent measurements are available, as with the dual-frequency precipitation radar on the Global Precipitation Measurement (GPM) mission core satellite, then retrieval algorithms are underconstrained and require assumptions about DSD parameters. To reduce the number of free parameters, algorithms can assume thatμis either a constant or a function ofDm
. Previous studies have suggestedμ–Λ constraints [where Λ 5 (4 +μ)/DDm
], but controversies exist over whetherμ–Λ constraints result from physical processes or mathematical artifacts due to high correlations between gamma DSD parameters. This study avoids mathematical artifacts by developing joint probability distribution functions (joint PDFs) of statistically independent DSD attributes derived from the raindrop mass spectrum. These joint PDFs are then mapped into gamma-shaped DSD parameter joint PDFs that can be used in probabilistic rainfall retrieval algorithms as proposed for the GPM satellite program. Surface disdrometer data show a high correlation coefficient between the mass spectrum mean diameterDm
and mass spectrum standard deviationσm
. To remove correlations between DSD attributes, a normalized mass spectrum standard deviation
σ
m
'
is constructed to be statistically independent ofDm
, with
σ
m
'
¯
representing the most likely value and
std
(
σ
m
'
)
representing its dispersion. Joint PDFs ofDm
andμare created fromDm
and
σ
m
'
. A simple algorithm shows that rain-rate estimates had smaller biases when assuming the DSD breadth of
σ
m
'
¯
than when assuming a constantμ.</description><subject>Algorithms</subject><subject>Correlation coefficient</subject><subject>Expected values</subject><subject>Gamma function</subject><subject>Mass spectra</subject><subject>Mathematical analysis</subject><subject>Mathematical independent variables</subject><subject>Meteorology</subject><subject>Precipitation</subject><subject>Probability density functions</subject><subject>Probability distribution</subject><subject>Radar</subject><subject>Radar echoes</subject><subject>Rain</subject><subject>Raindrops</subject><subject>Rainfall</subject><subject>Reflectance</subject><subject>Retrieval</subject><subject>Standard deviation</subject><subject>Studies</subject><issn>1558-8424</issn><issn>1558-8432</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpd0E1r20AQBmBREmi-zj0FFnrJRcnOfmjto7GTJsUmIa7Py3g1qmUsrbK7OiS_vjIOLuQ0c3jmZXiz7AfwWwCj77bYuLzMQebcFLfwLTsDrUf5SElxctyF-p6dx7jlXClj9Fm2mVF0oV7X7V-WNsSWG-yI-Yq9Yt2WwXdsWX8Qm9UxDapPtW8jW8U9X7XOh0A7TFT-5wuMkS07cin0DXvBgA0lCvEyO61wF-nqc15kq4f7P9PHfP7862k6medOSUg5qDFUBEYJg7owVUkgtOaar9dKYIXCEGJhHEfhNB_pqkTpSi6FMgIcgbzIbg65XfBvPcVkmzo62u2wJd9HC1qMx1KA3tOfX-jW96EdvhuU1MKIQvBB3R2UCz7GQJXtQt1geLfA7b55-3uymNqZBWmH5u0-9_pwsY3JhyMXBZhCFmP5D6i1gRM</recordid><startdate>20140501</startdate><enddate>20140501</enddate><creator>Williams, Christopher R.</creator><creator>Bringi, V. N.</creator><creator>Carey, Lawrence D.</creator><creator>Chandrasekar, V.</creator><creator>Gatlin, Patrick N.</creator><creator>Haddad, Ziad S.</creator><creator>Meneghini, Robert</creator><creator>Munchak, S. Joseph</creator><creator>Nesbitt, Stephen W.</creator><creator>Petersen, Walter A.</creator><creator>Tanelli, Simone</creator><creator>Tokay, Ali</creator><creator>Wilson, Anna</creator><creator>Wolff, David B.</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>S0X</scope></search><sort><creationdate>20140501</creationdate><title>Describing the Shape of Raindrop Size Distributions Using Uncorrelated Raindrop Mass Spectrum Parameters</title><author>Williams, Christopher R. ; Bringi, V. N. ; Carey, Lawrence D. ; Chandrasekar, V. ; Gatlin, Patrick N. ; Haddad, Ziad S. ; Meneghini, Robert ; Munchak, S. Joseph ; Nesbitt, Stephen W. ; Petersen, Walter A. ; Tanelli, Simone ; Tokay, Ali ; Wilson, Anna ; Wolff, David B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-1491fe17427a567fde1255050bb42afa27eaa67c0a2c5085fda3cd0324721ce13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Correlation coefficient</topic><topic>Expected values</topic><topic>Gamma function</topic><topic>Mass spectra</topic><topic>Mathematical analysis</topic><topic>Mathematical independent variables</topic><topic>Meteorology</topic><topic>Precipitation</topic><topic>Probability density functions</topic><topic>Probability distribution</topic><topic>Radar</topic><topic>Radar echoes</topic><topic>Rain</topic><topic>Raindrops</topic><topic>Rainfall</topic><topic>Reflectance</topic><topic>Retrieval</topic><topic>Standard deviation</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Williams, Christopher R.</creatorcontrib><creatorcontrib>Bringi, V. N.</creatorcontrib><creatorcontrib>Carey, Lawrence D.</creatorcontrib><creatorcontrib>Chandrasekar, V.</creatorcontrib><creatorcontrib>Gatlin, Patrick N.</creatorcontrib><creatorcontrib>Haddad, Ziad S.</creatorcontrib><creatorcontrib>Meneghini, Robert</creatorcontrib><creatorcontrib>Munchak, S. Joseph</creatorcontrib><creatorcontrib>Nesbitt, Stephen W.</creatorcontrib><creatorcontrib>Petersen, Walter A.</creatorcontrib><creatorcontrib>Tanelli, Simone</creatorcontrib><creatorcontrib>Tokay, Ali</creatorcontrib><creatorcontrib>Wilson, Anna</creatorcontrib><creatorcontrib>Wolff, David B.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>SIRS Editorial</collection><jtitle>Journal of applied meteorology and climatology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Williams, Christopher R.</au><au>Bringi, V. N.</au><au>Carey, Lawrence D.</au><au>Chandrasekar, V.</au><au>Gatlin, Patrick N.</au><au>Haddad, Ziad S.</au><au>Meneghini, Robert</au><au>Munchak, S. Joseph</au><au>Nesbitt, Stephen W.</au><au>Petersen, Walter A.</au><au>Tanelli, Simone</au><au>Tokay, Ali</au><au>Wilson, Anna</au><au>Wolff, David B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Describing the Shape of Raindrop Size Distributions Using Uncorrelated Raindrop Mass Spectrum Parameters</atitle><jtitle>Journal of applied meteorology and climatology</jtitle><date>2014-05-01</date><risdate>2014</risdate><volume>53</volume><issue>5</issue><spage>1282</spage><epage>1296</epage><pages>1282-1296</pages><issn>1558-8424</issn><eissn>1558-8432</eissn><coden>JOAMEZ</coden><abstract>Rainfall retrieval algorithms often assume a gamma-shaped raindrop size distribution (DSD) with three mathematical parametersNw
,Dm
, andμ. If only two independent measurements are available, as with the dual-frequency precipitation radar on the Global Precipitation Measurement (GPM) mission core satellite, then retrieval algorithms are underconstrained and require assumptions about DSD parameters. To reduce the number of free parameters, algorithms can assume thatμis either a constant or a function ofDm
. Previous studies have suggestedμ–Λ constraints [where Λ 5 (4 +μ)/DDm
], but controversies exist over whetherμ–Λ constraints result from physical processes or mathematical artifacts due to high correlations between gamma DSD parameters. This study avoids mathematical artifacts by developing joint probability distribution functions (joint PDFs) of statistically independent DSD attributes derived from the raindrop mass spectrum. These joint PDFs are then mapped into gamma-shaped DSD parameter joint PDFs that can be used in probabilistic rainfall retrieval algorithms as proposed for the GPM satellite program. Surface disdrometer data show a high correlation coefficient between the mass spectrum mean diameterDm
and mass spectrum standard deviationσm
. To remove correlations between DSD attributes, a normalized mass spectrum standard deviation
σ
m
'
is constructed to be statistically independent ofDm
, with
σ
m
'
¯
representing the most likely value and
std
(
σ
m
'
)
representing its dispersion. Joint PDFs ofDm
andμare created fromDm
and
σ
m
'
. A simple algorithm shows that rain-rate estimates had smaller biases when assuming the DSD breadth of
σ
m
'
¯
than when assuming a constantμ.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/jamc-d-13-076.1</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1558-8424 |
ispartof | Journal of applied meteorology and climatology, 2014-05, Vol.53 (5), p.1282-1296 |
issn | 1558-8424 1558-8432 |
language | eng |
recordid | cdi_proquest_miscellaneous_1529932151 |
source | Jstor Complete Legacy; American Meteorological Society; Alma/SFX Local Collection; EZB Electronic Journals Library |
subjects | Algorithms Correlation coefficient Expected values Gamma function Mass spectra Mathematical analysis Mathematical independent variables Meteorology Precipitation Probability density functions Probability distribution Radar Radar echoes Rain Raindrops Rainfall Reflectance Retrieval Standard deviation Studies |
title | Describing the Shape of Raindrop Size Distributions Using Uncorrelated Raindrop Mass Spectrum Parameters |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T20%3A53%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Describing%20the%20Shape%20of%20Raindrop%20Size%20Distributions%20Using%20Uncorrelated%20Raindrop%20Mass%20Spectrum%20Parameters&rft.jtitle=Journal%20of%20applied%20meteorology%20and%20climatology&rft.au=Williams,%20Christopher%20R.&rft.date=2014-05-01&rft.volume=53&rft.issue=5&rft.spage=1282&rft.epage=1296&rft.pages=1282-1296&rft.issn=1558-8424&rft.eissn=1558-8432&rft.coden=JOAMEZ&rft_id=info:doi/10.1175/jamc-d-13-076.1&rft_dat=%3Cjstor_proqu%3E26176369%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1535272620&rft_id=info:pmid/&rft_jstor_id=26176369&rfr_iscdi=true |