Evaluation of aerosol deconvolution algorithms for determining submicron particle size distributions with diffusion battery and condensation nucleus counter

Determining the particle size distribution of airborne particles is important in many contexts, including understanding and thus reducing the deposition of particles on micro-electronic components during their manufacture. Sizing of particles smaller than 0.1 μm is usually done with a diffusion batt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of aerosol science 1989, Vol.20 (4), p.477-482
Hauptverfasser: Wu, Jin Jwang, Cooper, Douglas W., Miller, Robert J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 482
container_issue 4
container_start_page 477
container_title Journal of aerosol science
container_volume 20
creator Wu, Jin Jwang
Cooper, Douglas W.
Miller, Robert J.
description Determining the particle size distribution of airborne particles is important in many contexts, including understanding and thus reducing the deposition of particles on micro-electronic components during their manufacture. Sizing of particles smaller than 0.1 μm is usually done with a diffusion battery, which requires use of a deconvolution algorithm to obtain particle size distributions. The following algorithms were evaluated: CINVERSE (Crump and Seinfeld, Aerosol Sci. Technol. 1, 363, 1982). Twomey's iterative procedure (Twomey, J. Comput. Phys. 18, 188, 1975), expectation maximization (Maher and Laird, J. Aerosol Sci. 16, 557, 1985), constrained least-squares fit (Nelder and Mead, Comput. J. 7, 308, 1965; Cooper and Spielman, Atoms. Envir. 10, 1976). Expectation maximization and constrained least-squares fit are more suited to this use than are the other two. The non-monotonic response of the diffusion battery with respect to particle size cannot be corrected for by any such algorithm. One could modify the diffusion battery to prevent entrance of the larger particles or one could use an independent measurement of the larger particles to correct the diffusion battery data. Using the latter approach provided an improved estimate of the particle size distribution in a clean room.
doi_str_mv 10.1016/0021-8502(89)90081-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_15289992</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0021850289900815</els_id><sourcerecordid>15289992</sourcerecordid><originalsourceid>FETCH-LOGICAL-c279t-59c52833c480b7a3c12c5984aedd7d05fa60199ae5e7db4f73d57b482ee1c7123</originalsourceid><addsrcrecordid>eNp9kc-OFCEQxjtGE8fVN_DAwRg9tEJ3M8DFxGzWP8kmXvRMaChWDA0jRc9mfRYfVnpms0dPJFXf9yu-qq57yeg7Rtn-PaUD6yWnwxup3ipKJev5o27HpFA9U_vpcbd7kDztniH-opQKxfiu-3t1NHE1NeREsicGSsYciQOb0zHH9dQw8SaXUH8uSHwurVmhLCGFdENwnZdgSxMdTKnBRiAY_gBxAWsJ88mP5LaZW8n7FTfebGoj3BGTHGlzHCQ8_yCtDbBiK66pKZ53T7yJCC_u34vux6er75df-utvn79efrzu7SBU7bmyfJDjaCdJZ2FGywbLlZwMOCcc5d7sKVPKAAfh5smL0XExT3IAYFawYbzoXp-5h5J_r4BVLwEtxGgS5BU1a3il1CaczsKWGLGA14cSFlPuNKN6O4Xe9qy3PWup9OkUmjfbq3u-QWuiLybZgA9e0VKwaaN_OMugZT0GKBptgGTBhQK2apfD_-f8A-1Nopw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>15289992</pqid></control><display><type>article</type><title>Evaluation of aerosol deconvolution algorithms for determining submicron particle size distributions with diffusion battery and condensation nucleus counter</title><source>Access via ScienceDirect (Elsevier)</source><creator>Wu, Jin Jwang ; Cooper, Douglas W. ; Miller, Robert J.</creator><creatorcontrib>Wu, Jin Jwang ; Cooper, Douglas W. ; Miller, Robert J.</creatorcontrib><description>Determining the particle size distribution of airborne particles is important in many contexts, including understanding and thus reducing the deposition of particles on micro-electronic components during their manufacture. Sizing of particles smaller than 0.1 μm is usually done with a diffusion battery, which requires use of a deconvolution algorithm to obtain particle size distributions. The following algorithms were evaluated: CINVERSE (Crump and Seinfeld, Aerosol Sci. Technol. 1, 363, 1982). Twomey's iterative procedure (Twomey, J. Comput. Phys. 18, 188, 1975), expectation maximization (Maher and Laird, J. Aerosol Sci. 16, 557, 1985), constrained least-squares fit (Nelder and Mead, Comput. J. 7, 308, 1965; Cooper and Spielman, Atoms. Envir. 10, 1976). Expectation maximization and constrained least-squares fit are more suited to this use than are the other two. The non-monotonic response of the diffusion battery with respect to particle size cannot be corrected for by any such algorithm. One could modify the diffusion battery to prevent entrance of the larger particles or one could use an independent measurement of the larger particles to correct the diffusion battery data. Using the latter approach provided an improved estimate of the particle size distribution in a clean room.</description><identifier>ISSN: 0021-8502</identifier><identifier>EISSN: 1879-1964</identifier><identifier>DOI: 10.1016/0021-8502(89)90081-5</identifier><identifier>CODEN: JALSB7</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Aerosols ; Chemistry ; Colloidal gels. Colloidal sols ; Colloidal state and disperse state ; Emulsions. Microemulsions. Foams ; Exact sciences and technology ; General and physical chemistry ; Powders</subject><ispartof>Journal of aerosol science, 1989, Vol.20 (4), p.477-482</ispartof><rights>1989</rights><rights>1989 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c279t-59c52833c480b7a3c12c5984aedd7d05fa60199ae5e7db4f73d57b482ee1c7123</citedby><cites>FETCH-LOGICAL-c279t-59c52833c480b7a3c12c5984aedd7d05fa60199ae5e7db4f73d57b482ee1c7123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0021-8502(89)90081-5$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,4024,27923,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=7279142$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Jin Jwang</creatorcontrib><creatorcontrib>Cooper, Douglas W.</creatorcontrib><creatorcontrib>Miller, Robert J.</creatorcontrib><title>Evaluation of aerosol deconvolution algorithms for determining submicron particle size distributions with diffusion battery and condensation nucleus counter</title><title>Journal of aerosol science</title><description>Determining the particle size distribution of airborne particles is important in many contexts, including understanding and thus reducing the deposition of particles on micro-electronic components during their manufacture. Sizing of particles smaller than 0.1 μm is usually done with a diffusion battery, which requires use of a deconvolution algorithm to obtain particle size distributions. The following algorithms were evaluated: CINVERSE (Crump and Seinfeld, Aerosol Sci. Technol. 1, 363, 1982). Twomey's iterative procedure (Twomey, J. Comput. Phys. 18, 188, 1975), expectation maximization (Maher and Laird, J. Aerosol Sci. 16, 557, 1985), constrained least-squares fit (Nelder and Mead, Comput. J. 7, 308, 1965; Cooper and Spielman, Atoms. Envir. 10, 1976). Expectation maximization and constrained least-squares fit are more suited to this use than are the other two. The non-monotonic response of the diffusion battery with respect to particle size cannot be corrected for by any such algorithm. One could modify the diffusion battery to prevent entrance of the larger particles or one could use an independent measurement of the larger particles to correct the diffusion battery data. Using the latter approach provided an improved estimate of the particle size distribution in a clean room.</description><subject>Aerosols</subject><subject>Chemistry</subject><subject>Colloidal gels. Colloidal sols</subject><subject>Colloidal state and disperse state</subject><subject>Emulsions. Microemulsions. Foams</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Powders</subject><issn>0021-8502</issn><issn>1879-1964</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1989</creationdate><recordtype>article</recordtype><recordid>eNp9kc-OFCEQxjtGE8fVN_DAwRg9tEJ3M8DFxGzWP8kmXvRMaChWDA0jRc9mfRYfVnpms0dPJFXf9yu-qq57yeg7Rtn-PaUD6yWnwxup3ipKJev5o27HpFA9U_vpcbd7kDztniH-opQKxfiu-3t1NHE1NeREsicGSsYciQOb0zHH9dQw8SaXUH8uSHwurVmhLCGFdENwnZdgSxMdTKnBRiAY_gBxAWsJ88mP5LaZW8n7FTfebGoj3BGTHGlzHCQ8_yCtDbBiK66pKZ53T7yJCC_u34vux6er75df-utvn79efrzu7SBU7bmyfJDjaCdJZ2FGywbLlZwMOCcc5d7sKVPKAAfh5smL0XExT3IAYFawYbzoXp-5h5J_r4BVLwEtxGgS5BU1a3il1CaczsKWGLGA14cSFlPuNKN6O4Xe9qy3PWup9OkUmjfbq3u-QWuiLybZgA9e0VKwaaN_OMugZT0GKBptgGTBhQK2apfD_-f8A-1Nopw</recordid><startdate>1989</startdate><enddate>1989</enddate><creator>Wu, Jin Jwang</creator><creator>Cooper, Douglas W.</creator><creator>Miller, Robert J.</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TV</scope><scope>C1K</scope></search><sort><creationdate>1989</creationdate><title>Evaluation of aerosol deconvolution algorithms for determining submicron particle size distributions with diffusion battery and condensation nucleus counter</title><author>Wu, Jin Jwang ; Cooper, Douglas W. ; Miller, Robert J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c279t-59c52833c480b7a3c12c5984aedd7d05fa60199ae5e7db4f73d57b482ee1c7123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1989</creationdate><topic>Aerosols</topic><topic>Chemistry</topic><topic>Colloidal gels. Colloidal sols</topic><topic>Colloidal state and disperse state</topic><topic>Emulsions. Microemulsions. Foams</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Powders</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Jin Jwang</creatorcontrib><creatorcontrib>Cooper, Douglas W.</creatorcontrib><creatorcontrib>Miller, Robert J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Pollution Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Journal of aerosol science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Jin Jwang</au><au>Cooper, Douglas W.</au><au>Miller, Robert J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation of aerosol deconvolution algorithms for determining submicron particle size distributions with diffusion battery and condensation nucleus counter</atitle><jtitle>Journal of aerosol science</jtitle><date>1989</date><risdate>1989</risdate><volume>20</volume><issue>4</issue><spage>477</spage><epage>482</epage><pages>477-482</pages><issn>0021-8502</issn><eissn>1879-1964</eissn><coden>JALSB7</coden><abstract>Determining the particle size distribution of airborne particles is important in many contexts, including understanding and thus reducing the deposition of particles on micro-electronic components during their manufacture. Sizing of particles smaller than 0.1 μm is usually done with a diffusion battery, which requires use of a deconvolution algorithm to obtain particle size distributions. The following algorithms were evaluated: CINVERSE (Crump and Seinfeld, Aerosol Sci. Technol. 1, 363, 1982). Twomey's iterative procedure (Twomey, J. Comput. Phys. 18, 188, 1975), expectation maximization (Maher and Laird, J. Aerosol Sci. 16, 557, 1985), constrained least-squares fit (Nelder and Mead, Comput. J. 7, 308, 1965; Cooper and Spielman, Atoms. Envir. 10, 1976). Expectation maximization and constrained least-squares fit are more suited to this use than are the other two. The non-monotonic response of the diffusion battery with respect to particle size cannot be corrected for by any such algorithm. One could modify the diffusion battery to prevent entrance of the larger particles or one could use an independent measurement of the larger particles to correct the diffusion battery data. Using the latter approach provided an improved estimate of the particle size distribution in a clean room.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/0021-8502(89)90081-5</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-8502
ispartof Journal of aerosol science, 1989, Vol.20 (4), p.477-482
issn 0021-8502
1879-1964
language eng
recordid cdi_proquest_miscellaneous_15289992
source Access via ScienceDirect (Elsevier)
subjects Aerosols
Chemistry
Colloidal gels. Colloidal sols
Colloidal state and disperse state
Emulsions. Microemulsions. Foams
Exact sciences and technology
General and physical chemistry
Powders
title Evaluation of aerosol deconvolution algorithms for determining submicron particle size distributions with diffusion battery and condensation nucleus counter
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T18%3A05%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20of%20aerosol%20deconvolution%20algorithms%20for%20determining%20submicron%20particle%20size%20distributions%20with%20diffusion%20battery%20and%20condensation%20nucleus%20counter&rft.jtitle=Journal%20of%20aerosol%20science&rft.au=Wu,%20Jin%20Jwang&rft.date=1989&rft.volume=20&rft.issue=4&rft.spage=477&rft.epage=482&rft.pages=477-482&rft.issn=0021-8502&rft.eissn=1879-1964&rft.coden=JALSB7&rft_id=info:doi/10.1016/0021-8502(89)90081-5&rft_dat=%3Cproquest_cross%3E15289992%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=15289992&rft_id=info:pmid/&rft_els_id=0021850289900815&rfr_iscdi=true