Observation of quadrupole helix chirality and its domain structure in DyFe3(BO3)4
Resonant X-ray diffraction (RXD) uses X-rays in the vicinity of a specific atomic absorption edge and is a powerful technique for studying symmetry breaking by motifs of various multipole moments, such as electric monopoles (charge), magnetic dipoles (spin) and electric quadrupoles (orbital). Using...
Gespeichert in:
Veröffentlicht in: | Nature materials 2014-06, Vol.13 (6), p.611-618 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 618 |
---|---|
container_issue | 6 |
container_start_page | 611 |
container_title | Nature materials |
container_volume | 13 |
creator | Usui, T. Tanaka, Y. Nakajima, H. Taguchi, M. Chainani, A. Oura, M. Shin, S. Katayama, N. Sawa, H. Wakabayashi, Y. Kimura, T. |
description | Resonant X-ray diffraction (RXD) uses X-rays in the vicinity of a specific atomic absorption edge and is a powerful technique for studying symmetry breaking by motifs of various multipole moments, such as electric monopoles (charge), magnetic dipoles (spin) and electric quadrupoles (orbital). Using circularly polarized X-rays, this technique has been developed to verify symmetry breaking effects arising from chirality, the asymmetry of an object upon its mirroring. Chirality plays a crucial role in the emergence of functionalities such as optical rotatory power and multiferroicity. Here we apply spatially resolved RXD to reveal the helix chirality of Dy 4
f
electric quadrupole orientations and its domain structure in DyFe
3
(BO
3
)
4
, which shows a reversible phase transition into an enantiomorphic space-group pair. The present study provides evidence for a helix chiral motif of quadrupole moments developed in crystallographic helix chirality.
In addition to the structural chirality of materials, there has recently been a rise in interest in the chirality arising from their magnetic and electronic structure. Using a spatially resolved resonant X-ray diffraction technique, a helical arrangement of the Dy 4
f
quadrupole moments in the ferroborate system DyFe
3
(BO
3
)
4
is uncovered. |
doi_str_mv | 10.1038/nmat3942 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1527326934</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3419599891</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-762e9362f35dd02c253c8efb322e597702756dfe51f64d69a1292f9851b01ead3</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRbK2Cv0AWvLSH6u7sR5KjVqtCoQh6DpvsxKbko91NxP57I21VepoZ5uGZ4SXkkrMbzkR4W5WmEZGEI9LnMtBjqTU73vWcA_TImfdLxoArpU9JD2TAlAihT17niUf3aZq8rmid0XVrrGtXdYF0gUX-RdNF7kyRNxtqKkvzxlNblyavqG9cmzatQ9oND5spiuH9XIzkOTnJTOHxYlcH5H36-DZ5Hs_mTy-Tu9k4lZw340ADRkJDJpS1DFJQIg0xSwQAqigIGARK2wwVz7S0OjIcIsiiUPGEcTRWDMhw6125et2ib-Iy9ykWhamwbn3MFQQCdCRkh14foMu6dVX3XUepMORMsvBPmLrae4dZvHJ5adwm5iz-iTnex9yhVzthm5Rof8F9rh0w2gK-W1Uf6P5dPJR9A2ddg_o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1558810408</pqid></control><display><type>article</type><title>Observation of quadrupole helix chirality and its domain structure in DyFe3(BO3)4</title><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Usui, T. ; Tanaka, Y. ; Nakajima, H. ; Taguchi, M. ; Chainani, A. ; Oura, M. ; Shin, S. ; Katayama, N. ; Sawa, H. ; Wakabayashi, Y. ; Kimura, T.</creator><creatorcontrib>Usui, T. ; Tanaka, Y. ; Nakajima, H. ; Taguchi, M. ; Chainani, A. ; Oura, M. ; Shin, S. ; Katayama, N. ; Sawa, H. ; Wakabayashi, Y. ; Kimura, T.</creatorcontrib><description>Resonant X-ray diffraction (RXD) uses X-rays in the vicinity of a specific atomic absorption edge and is a powerful technique for studying symmetry breaking by motifs of various multipole moments, such as electric monopoles (charge), magnetic dipoles (spin) and electric quadrupoles (orbital). Using circularly polarized X-rays, this technique has been developed to verify symmetry breaking effects arising from chirality, the asymmetry of an object upon its mirroring. Chirality plays a crucial role in the emergence of functionalities such as optical rotatory power and multiferroicity. Here we apply spatially resolved RXD to reveal the helix chirality of Dy 4
f
electric quadrupole orientations and its domain structure in DyFe
3
(BO
3
)
4
, which shows a reversible phase transition into an enantiomorphic space-group pair. The present study provides evidence for a helix chiral motif of quadrupole moments developed in crystallographic helix chirality.
In addition to the structural chirality of materials, there has recently been a rise in interest in the chirality arising from their magnetic and electronic structure. Using a spatially resolved resonant X-ray diffraction technique, a helical arrangement of the Dy 4
f
quadrupole moments in the ferroborate system DyFe
3
(BO
3
)
4
is uncovered.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/nmat3942</identifier><identifier>PMID: 24705382</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/119/995 ; Absorption ; Biomaterials ; Condensed Matter Physics ; Materials Science ; Nanotechnology ; Optical and Electronic Materials ; Spectral analysis ; X-ray diffraction</subject><ispartof>Nature materials, 2014-06, Vol.13 (6), p.611-618</ispartof><rights>Springer Nature Limited 2014</rights><rights>Copyright Nature Publishing Group Jun 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-762e9362f35dd02c253c8efb322e597702756dfe51f64d69a1292f9851b01ead3</citedby><cites>FETCH-LOGICAL-c411t-762e9362f35dd02c253c8efb322e597702756dfe51f64d69a1292f9851b01ead3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nmat3942$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nmat3942$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24705382$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Usui, T.</creatorcontrib><creatorcontrib>Tanaka, Y.</creatorcontrib><creatorcontrib>Nakajima, H.</creatorcontrib><creatorcontrib>Taguchi, M.</creatorcontrib><creatorcontrib>Chainani, A.</creatorcontrib><creatorcontrib>Oura, M.</creatorcontrib><creatorcontrib>Shin, S.</creatorcontrib><creatorcontrib>Katayama, N.</creatorcontrib><creatorcontrib>Sawa, H.</creatorcontrib><creatorcontrib>Wakabayashi, Y.</creatorcontrib><creatorcontrib>Kimura, T.</creatorcontrib><title>Observation of quadrupole helix chirality and its domain structure in DyFe3(BO3)4</title><title>Nature materials</title><addtitle>Nature Mater</addtitle><addtitle>Nat Mater</addtitle><description>Resonant X-ray diffraction (RXD) uses X-rays in the vicinity of a specific atomic absorption edge and is a powerful technique for studying symmetry breaking by motifs of various multipole moments, such as electric monopoles (charge), magnetic dipoles (spin) and electric quadrupoles (orbital). Using circularly polarized X-rays, this technique has been developed to verify symmetry breaking effects arising from chirality, the asymmetry of an object upon its mirroring. Chirality plays a crucial role in the emergence of functionalities such as optical rotatory power and multiferroicity. Here we apply spatially resolved RXD to reveal the helix chirality of Dy 4
f
electric quadrupole orientations and its domain structure in DyFe
3
(BO
3
)
4
, which shows a reversible phase transition into an enantiomorphic space-group pair. The present study provides evidence for a helix chiral motif of quadrupole moments developed in crystallographic helix chirality.
In addition to the structural chirality of materials, there has recently been a rise in interest in the chirality arising from their magnetic and electronic structure. Using a spatially resolved resonant X-ray diffraction technique, a helical arrangement of the Dy 4
f
quadrupole moments in the ferroborate system DyFe
3
(BO
3
)
4
is uncovered.</description><subject>639/301/119/995</subject><subject>Absorption</subject><subject>Biomaterials</subject><subject>Condensed Matter Physics</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Spectral analysis</subject><subject>X-ray diffraction</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkE1Lw0AQhhdRbK2Cv0AWvLSH6u7sR5KjVqtCoQh6DpvsxKbko91NxP57I21VepoZ5uGZ4SXkkrMbzkR4W5WmEZGEI9LnMtBjqTU73vWcA_TImfdLxoArpU9JD2TAlAihT17niUf3aZq8rmid0XVrrGtXdYF0gUX-RdNF7kyRNxtqKkvzxlNblyavqG9cmzatQ9oND5spiuH9XIzkOTnJTOHxYlcH5H36-DZ5Hs_mTy-Tu9k4lZw340ADRkJDJpS1DFJQIg0xSwQAqigIGARK2wwVz7S0OjIcIsiiUPGEcTRWDMhw6125et2ib-Iy9ykWhamwbn3MFQQCdCRkh14foMu6dVX3XUepMORMsvBPmLrae4dZvHJ5adwm5iz-iTnex9yhVzthm5Rof8F9rh0w2gK-W1Uf6P5dPJR9A2ddg_o</recordid><startdate>20140601</startdate><enddate>20140601</enddate><creator>Usui, T.</creator><creator>Tanaka, Y.</creator><creator>Nakajima, H.</creator><creator>Taguchi, M.</creator><creator>Chainani, A.</creator><creator>Oura, M.</creator><creator>Shin, S.</creator><creator>Katayama, N.</creator><creator>Sawa, H.</creator><creator>Wakabayashi, Y.</creator><creator>Kimura, T.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20140601</creationdate><title>Observation of quadrupole helix chirality and its domain structure in DyFe3(BO3)4</title><author>Usui, T. ; Tanaka, Y. ; Nakajima, H. ; Taguchi, M. ; Chainani, A. ; Oura, M. ; Shin, S. ; Katayama, N. ; Sawa, H. ; Wakabayashi, Y. ; Kimura, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-762e9362f35dd02c253c8efb322e597702756dfe51f64d69a1292f9851b01ead3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>639/301/119/995</topic><topic>Absorption</topic><topic>Biomaterials</topic><topic>Condensed Matter Physics</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Spectral analysis</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Usui, T.</creatorcontrib><creatorcontrib>Tanaka, Y.</creatorcontrib><creatorcontrib>Nakajima, H.</creatorcontrib><creatorcontrib>Taguchi, M.</creatorcontrib><creatorcontrib>Chainani, A.</creatorcontrib><creatorcontrib>Oura, M.</creatorcontrib><creatorcontrib>Shin, S.</creatorcontrib><creatorcontrib>Katayama, N.</creatorcontrib><creatorcontrib>Sawa, H.</creatorcontrib><creatorcontrib>Wakabayashi, Y.</creatorcontrib><creatorcontrib>Kimura, T.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Usui, T.</au><au>Tanaka, Y.</au><au>Nakajima, H.</au><au>Taguchi, M.</au><au>Chainani, A.</au><au>Oura, M.</au><au>Shin, S.</au><au>Katayama, N.</au><au>Sawa, H.</au><au>Wakabayashi, Y.</au><au>Kimura, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Observation of quadrupole helix chirality and its domain structure in DyFe3(BO3)4</atitle><jtitle>Nature materials</jtitle><stitle>Nature Mater</stitle><addtitle>Nat Mater</addtitle><date>2014-06-01</date><risdate>2014</risdate><volume>13</volume><issue>6</issue><spage>611</spage><epage>618</epage><pages>611-618</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>Resonant X-ray diffraction (RXD) uses X-rays in the vicinity of a specific atomic absorption edge and is a powerful technique for studying symmetry breaking by motifs of various multipole moments, such as electric monopoles (charge), magnetic dipoles (spin) and electric quadrupoles (orbital). Using circularly polarized X-rays, this technique has been developed to verify symmetry breaking effects arising from chirality, the asymmetry of an object upon its mirroring. Chirality plays a crucial role in the emergence of functionalities such as optical rotatory power and multiferroicity. Here we apply spatially resolved RXD to reveal the helix chirality of Dy 4
f
electric quadrupole orientations and its domain structure in DyFe
3
(BO
3
)
4
, which shows a reversible phase transition into an enantiomorphic space-group pair. The present study provides evidence for a helix chiral motif of quadrupole moments developed in crystallographic helix chirality.
In addition to the structural chirality of materials, there has recently been a rise in interest in the chirality arising from their magnetic and electronic structure. Using a spatially resolved resonant X-ray diffraction technique, a helical arrangement of the Dy 4
f
quadrupole moments in the ferroborate system DyFe
3
(BO
3
)
4
is uncovered.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>24705382</pmid><doi>10.1038/nmat3942</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1476-1122 |
ispartof | Nature materials, 2014-06, Vol.13 (6), p.611-618 |
issn | 1476-1122 1476-4660 |
language | eng |
recordid | cdi_proquest_miscellaneous_1527326934 |
source | SpringerLink Journals; Nature Journals Online |
subjects | 639/301/119/995 Absorption Biomaterials Condensed Matter Physics Materials Science Nanotechnology Optical and Electronic Materials Spectral analysis X-ray diffraction |
title | Observation of quadrupole helix chirality and its domain structure in DyFe3(BO3)4 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T07%3A08%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Observation%20of%20quadrupole%20helix%20chirality%20and%20its%20domain%20structure%20in%20DyFe3(BO3)4&rft.jtitle=Nature%20materials&rft.au=Usui,%20T.&rft.date=2014-06-01&rft.volume=13&rft.issue=6&rft.spage=611&rft.epage=618&rft.pages=611-618&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/nmat3942&rft_dat=%3Cproquest_cross%3E3419599891%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1558810408&rft_id=info:pmid/24705382&rfr_iscdi=true |