In vivo application of tissue-engineered blood vessels of bacterial cellulose as small arterial substitutes: proof of concept?

Abstract Background Tissue-engineered blood vessels (TEBVs) represent an innovative approach for overcoming reconstructive problems associated with vascular diseases by providing small-caliber vascular grafts. This study aimed to evaluate a novel biomaterial of bacterially synthesized cellulose (BC)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of surgical research 2014-06, Vol.189 (2), p.340-347
Hauptverfasser: Scherner, Maximilian, MD, Reutter, Stefanie, MD, Klemm, Dieter, PhD, Sterner-Kock, Anja, PhD, Guschlbauer, Maria, PhD, Richter, Thomas, MChem, Langebartels, Georg, MD, Madershahian, Navid, PhD, Wahlers, Thorsten, PhD, Wippermann, Jens, PhD
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 347
container_issue 2
container_start_page 340
container_title The Journal of surgical research
container_volume 189
creator Scherner, Maximilian, MD
Reutter, Stefanie, MD
Klemm, Dieter, PhD
Sterner-Kock, Anja, PhD
Guschlbauer, Maria, PhD
Richter, Thomas, MChem
Langebartels, Georg, MD
Madershahian, Navid, PhD
Wahlers, Thorsten, PhD
Wippermann, Jens, PhD
description Abstract Background Tissue-engineered blood vessels (TEBVs) represent an innovative approach for overcoming reconstructive problems associated with vascular diseases by providing small-caliber vascular grafts. This study aimed to evaluate a novel biomaterial of bacterially synthesized cellulose (BC) as a potential scaffold for small-diameter TEBV. Methods Small-diameter blood vessels with a supramolecular fiber network structure consisting of tubular hydrogels from biodesigned cellulose were created using Gluconacetobacter strains and Matrix reservoir technology. BC tubes (length: 100 mm, inner diameter: 4.0–5.0 mm) were applied to replace the carotid arteries of 10 sheep for a period of 3 mo to gain further insights into (a) functional ( in vivo ) performance, (b) ability of providing a scaffold for the neoformation of a vascular wall and (c) their proinflammatory potential, and the (d) technical feasibility of the procedure. Results Preoperative analysis revealed a bursting strength of the grafts of approximately 800 mm Hg and suture retention strength of 4–5 N. Postexplantation analysis showed a patency rate of 50% ( n  = 5) and physiological performance of the patent grafts at 4, 8, and 12 wk postoperatively, compared with native arteries. Histologic analysis revealed a neoformation of a vascular wall–like structure along the BC scaffold consisting of immigrated vascular smooth muscle cells and a homogeneous endothelialization of the inner graft surface without signs of prothrombogenic or inflammatory potential. Scanning electron microscopy revealed a confluent luminal endothelial cell layer and the immigration of vascular smooth muscle cells into the BC matrix. Conclusions BC grafts provide a scaffold for the neoformation of a three-layered vascular wall exhibit attractive properties for their use in future TEBV programs for cardiovascular surgery.
doi_str_mv 10.1016/j.jss.2014.02.011
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1526133306</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022480414001553</els_id><sourcerecordid>1526133306</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-8986d8e7fbf9273f7dbdadddcda954f5aa94cd390d566f4521446c663c4c3c453</originalsourceid><addsrcrecordid>eNp9kU-L1TAUxYMoznP0A7iRLN20Js2ftgoOMjjjwIALdR3S5FZS85pnbvtgNn52U97ThQshIVxyzuHyO4S85KzmjOs3Uz0h1g3jsmZNzTh_RHac9arqdCsekx1jTVPJjskL8gxxYmXuW_GUXDSybTRT_Y78upvpMRwTtYdDDM4uIc00jXQJiCtUMH8PM0AGT4eYkqdHQISIm2SwboEcbKQOYlxjQqAWKe5tjNTm8x-uAy5hWRfAt_SQUzGW49Ls4LBcPSdPRhsRXpzfS_Lt5uPX60_V_efbu-sP95WTrVyqru-076Adh7FvWjG2fvDWe--87ZUclbW9dF70zCutR6kaLqV2WgsnXblKXJLXp9yywc8VcDH7gNvadoa0ouGq0VwIwXSR8pPU5YSYYTSHHPY2PxjOzIbdTKZgNxt2wxpTsBfPq3P8OuzB_3X84VwE706Cwg6OAbJBF6Aw8CGDW4xP4b_x7_9xuxjm0lb8AQ-AU1rzXOgZbrAYzJet9612LhnjSgnxG3B8qoY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1526133306</pqid></control><display><type>article</type><title>In vivo application of tissue-engineered blood vessels of bacterial cellulose as small arterial substitutes: proof of concept?</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Scherner, Maximilian, MD ; Reutter, Stefanie, MD ; Klemm, Dieter, PhD ; Sterner-Kock, Anja, PhD ; Guschlbauer, Maria, PhD ; Richter, Thomas, MChem ; Langebartels, Georg, MD ; Madershahian, Navid, PhD ; Wahlers, Thorsten, PhD ; Wippermann, Jens, PhD</creator><creatorcontrib>Scherner, Maximilian, MD ; Reutter, Stefanie, MD ; Klemm, Dieter, PhD ; Sterner-Kock, Anja, PhD ; Guschlbauer, Maria, PhD ; Richter, Thomas, MChem ; Langebartels, Georg, MD ; Madershahian, Navid, PhD ; Wahlers, Thorsten, PhD ; Wippermann, Jens, PhD</creatorcontrib><description>Abstract Background Tissue-engineered blood vessels (TEBVs) represent an innovative approach for overcoming reconstructive problems associated with vascular diseases by providing small-caliber vascular grafts. This study aimed to evaluate a novel biomaterial of bacterially synthesized cellulose (BC) as a potential scaffold for small-diameter TEBV. Methods Small-diameter blood vessels with a supramolecular fiber network structure consisting of tubular hydrogels from biodesigned cellulose were created using Gluconacetobacter strains and Matrix reservoir technology. BC tubes (length: 100 mm, inner diameter: 4.0–5.0 mm) were applied to replace the carotid arteries of 10 sheep for a period of 3 mo to gain further insights into (a) functional ( in vivo ) performance, (b) ability of providing a scaffold for the neoformation of a vascular wall and (c) their proinflammatory potential, and the (d) technical feasibility of the procedure. Results Preoperative analysis revealed a bursting strength of the grafts of approximately 800 mm Hg and suture retention strength of 4–5 N. Postexplantation analysis showed a patency rate of 50% ( n  = 5) and physiological performance of the patent grafts at 4, 8, and 12 wk postoperatively, compared with native arteries. Histologic analysis revealed a neoformation of a vascular wall–like structure along the BC scaffold consisting of immigrated vascular smooth muscle cells and a homogeneous endothelialization of the inner graft surface without signs of prothrombogenic or inflammatory potential. Scanning electron microscopy revealed a confluent luminal endothelial cell layer and the immigration of vascular smooth muscle cells into the BC matrix. Conclusions BC grafts provide a scaffold for the neoformation of a three-layered vascular wall exhibit attractive properties for their use in future TEBV programs for cardiovascular surgery.</description><identifier>ISSN: 0022-4804</identifier><identifier>EISSN: 1095-8673</identifier><identifier>DOI: 10.1016/j.jss.2014.02.011</identifier><identifier>PMID: 24726059</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Arterioles ; Artificial small-diameter vascular grafts ; Bacterial cellulose ; Blood Vessel Prosthesis ; Blood Vessel Prosthesis Implantation ; Cellulose ; Feasibility Studies ; Female ; Foreign-Body Reaction ; Gluconacetobacter xylinus ; Materials Testing ; Sheep ; Surgery ; Tissue Engineering ; Tissue Scaffolds ; Vascular Patency ; Vascular surgery ; Vascular tissue engineering</subject><ispartof>The Journal of surgical research, 2014-06, Vol.189 (2), p.340-347</ispartof><rights>Elsevier Inc.</rights><rights>2014 Elsevier Inc.</rights><rights>Copyright © 2014 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-8986d8e7fbf9273f7dbdadddcda954f5aa94cd390d566f4521446c663c4c3c453</citedby><cites>FETCH-LOGICAL-c474t-8986d8e7fbf9273f7dbdadddcda954f5aa94cd390d566f4521446c663c4c3c453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jss.2014.02.011$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24726059$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Scherner, Maximilian, MD</creatorcontrib><creatorcontrib>Reutter, Stefanie, MD</creatorcontrib><creatorcontrib>Klemm, Dieter, PhD</creatorcontrib><creatorcontrib>Sterner-Kock, Anja, PhD</creatorcontrib><creatorcontrib>Guschlbauer, Maria, PhD</creatorcontrib><creatorcontrib>Richter, Thomas, MChem</creatorcontrib><creatorcontrib>Langebartels, Georg, MD</creatorcontrib><creatorcontrib>Madershahian, Navid, PhD</creatorcontrib><creatorcontrib>Wahlers, Thorsten, PhD</creatorcontrib><creatorcontrib>Wippermann, Jens, PhD</creatorcontrib><title>In vivo application of tissue-engineered blood vessels of bacterial cellulose as small arterial substitutes: proof of concept?</title><title>The Journal of surgical research</title><addtitle>J Surg Res</addtitle><description>Abstract Background Tissue-engineered blood vessels (TEBVs) represent an innovative approach for overcoming reconstructive problems associated with vascular diseases by providing small-caliber vascular grafts. This study aimed to evaluate a novel biomaterial of bacterially synthesized cellulose (BC) as a potential scaffold for small-diameter TEBV. Methods Small-diameter blood vessels with a supramolecular fiber network structure consisting of tubular hydrogels from biodesigned cellulose were created using Gluconacetobacter strains and Matrix reservoir technology. BC tubes (length: 100 mm, inner diameter: 4.0–5.0 mm) were applied to replace the carotid arteries of 10 sheep for a period of 3 mo to gain further insights into (a) functional ( in vivo ) performance, (b) ability of providing a scaffold for the neoformation of a vascular wall and (c) their proinflammatory potential, and the (d) technical feasibility of the procedure. Results Preoperative analysis revealed a bursting strength of the grafts of approximately 800 mm Hg and suture retention strength of 4–5 N. Postexplantation analysis showed a patency rate of 50% ( n  = 5) and physiological performance of the patent grafts at 4, 8, and 12 wk postoperatively, compared with native arteries. Histologic analysis revealed a neoformation of a vascular wall–like structure along the BC scaffold consisting of immigrated vascular smooth muscle cells and a homogeneous endothelialization of the inner graft surface without signs of prothrombogenic or inflammatory potential. Scanning electron microscopy revealed a confluent luminal endothelial cell layer and the immigration of vascular smooth muscle cells into the BC matrix. Conclusions BC grafts provide a scaffold for the neoformation of a three-layered vascular wall exhibit attractive properties for their use in future TEBV programs for cardiovascular surgery.</description><subject>Animals</subject><subject>Arterioles</subject><subject>Artificial small-diameter vascular grafts</subject><subject>Bacterial cellulose</subject><subject>Blood Vessel Prosthesis</subject><subject>Blood Vessel Prosthesis Implantation</subject><subject>Cellulose</subject><subject>Feasibility Studies</subject><subject>Female</subject><subject>Foreign-Body Reaction</subject><subject>Gluconacetobacter xylinus</subject><subject>Materials Testing</subject><subject>Sheep</subject><subject>Surgery</subject><subject>Tissue Engineering</subject><subject>Tissue Scaffolds</subject><subject>Vascular Patency</subject><subject>Vascular surgery</subject><subject>Vascular tissue engineering</subject><issn>0022-4804</issn><issn>1095-8673</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU-L1TAUxYMoznP0A7iRLN20Js2ftgoOMjjjwIALdR3S5FZS85pnbvtgNn52U97ThQshIVxyzuHyO4S85KzmjOs3Uz0h1g3jsmZNzTh_RHac9arqdCsekx1jTVPJjskL8gxxYmXuW_GUXDSybTRT_Y78upvpMRwTtYdDDM4uIc00jXQJiCtUMH8PM0AGT4eYkqdHQISIm2SwboEcbKQOYlxjQqAWKe5tjNTm8x-uAy5hWRfAt_SQUzGW49Ls4LBcPSdPRhsRXpzfS_Lt5uPX60_V_efbu-sP95WTrVyqru-076Adh7FvWjG2fvDWe--87ZUclbW9dF70zCutR6kaLqV2WgsnXblKXJLXp9yywc8VcDH7gNvadoa0ouGq0VwIwXSR8pPU5YSYYTSHHPY2PxjOzIbdTKZgNxt2wxpTsBfPq3P8OuzB_3X84VwE706Cwg6OAbJBF6Aw8CGDW4xP4b_x7_9xuxjm0lb8AQ-AU1rzXOgZbrAYzJet9612LhnjSgnxG3B8qoY</recordid><startdate>20140615</startdate><enddate>20140615</enddate><creator>Scherner, Maximilian, MD</creator><creator>Reutter, Stefanie, MD</creator><creator>Klemm, Dieter, PhD</creator><creator>Sterner-Kock, Anja, PhD</creator><creator>Guschlbauer, Maria, PhD</creator><creator>Richter, Thomas, MChem</creator><creator>Langebartels, Georg, MD</creator><creator>Madershahian, Navid, PhD</creator><creator>Wahlers, Thorsten, PhD</creator><creator>Wippermann, Jens, PhD</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20140615</creationdate><title>In vivo application of tissue-engineered blood vessels of bacterial cellulose as small arterial substitutes: proof of concept?</title><author>Scherner, Maximilian, MD ; Reutter, Stefanie, MD ; Klemm, Dieter, PhD ; Sterner-Kock, Anja, PhD ; Guschlbauer, Maria, PhD ; Richter, Thomas, MChem ; Langebartels, Georg, MD ; Madershahian, Navid, PhD ; Wahlers, Thorsten, PhD ; Wippermann, Jens, PhD</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-8986d8e7fbf9273f7dbdadddcda954f5aa94cd390d566f4521446c663c4c3c453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Arterioles</topic><topic>Artificial small-diameter vascular grafts</topic><topic>Bacterial cellulose</topic><topic>Blood Vessel Prosthesis</topic><topic>Blood Vessel Prosthesis Implantation</topic><topic>Cellulose</topic><topic>Feasibility Studies</topic><topic>Female</topic><topic>Foreign-Body Reaction</topic><topic>Gluconacetobacter xylinus</topic><topic>Materials Testing</topic><topic>Sheep</topic><topic>Surgery</topic><topic>Tissue Engineering</topic><topic>Tissue Scaffolds</topic><topic>Vascular Patency</topic><topic>Vascular surgery</topic><topic>Vascular tissue engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Scherner, Maximilian, MD</creatorcontrib><creatorcontrib>Reutter, Stefanie, MD</creatorcontrib><creatorcontrib>Klemm, Dieter, PhD</creatorcontrib><creatorcontrib>Sterner-Kock, Anja, PhD</creatorcontrib><creatorcontrib>Guschlbauer, Maria, PhD</creatorcontrib><creatorcontrib>Richter, Thomas, MChem</creatorcontrib><creatorcontrib>Langebartels, Georg, MD</creatorcontrib><creatorcontrib>Madershahian, Navid, PhD</creatorcontrib><creatorcontrib>Wahlers, Thorsten, PhD</creatorcontrib><creatorcontrib>Wippermann, Jens, PhD</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of surgical research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scherner, Maximilian, MD</au><au>Reutter, Stefanie, MD</au><au>Klemm, Dieter, PhD</au><au>Sterner-Kock, Anja, PhD</au><au>Guschlbauer, Maria, PhD</au><au>Richter, Thomas, MChem</au><au>Langebartels, Georg, MD</au><au>Madershahian, Navid, PhD</au><au>Wahlers, Thorsten, PhD</au><au>Wippermann, Jens, PhD</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In vivo application of tissue-engineered blood vessels of bacterial cellulose as small arterial substitutes: proof of concept?</atitle><jtitle>The Journal of surgical research</jtitle><addtitle>J Surg Res</addtitle><date>2014-06-15</date><risdate>2014</risdate><volume>189</volume><issue>2</issue><spage>340</spage><epage>347</epage><pages>340-347</pages><issn>0022-4804</issn><eissn>1095-8673</eissn><abstract>Abstract Background Tissue-engineered blood vessels (TEBVs) represent an innovative approach for overcoming reconstructive problems associated with vascular diseases by providing small-caliber vascular grafts. This study aimed to evaluate a novel biomaterial of bacterially synthesized cellulose (BC) as a potential scaffold for small-diameter TEBV. Methods Small-diameter blood vessels with a supramolecular fiber network structure consisting of tubular hydrogels from biodesigned cellulose were created using Gluconacetobacter strains and Matrix reservoir technology. BC tubes (length: 100 mm, inner diameter: 4.0–5.0 mm) were applied to replace the carotid arteries of 10 sheep for a period of 3 mo to gain further insights into (a) functional ( in vivo ) performance, (b) ability of providing a scaffold for the neoformation of a vascular wall and (c) their proinflammatory potential, and the (d) technical feasibility of the procedure. Results Preoperative analysis revealed a bursting strength of the grafts of approximately 800 mm Hg and suture retention strength of 4–5 N. Postexplantation analysis showed a patency rate of 50% ( n  = 5) and physiological performance of the patent grafts at 4, 8, and 12 wk postoperatively, compared with native arteries. Histologic analysis revealed a neoformation of a vascular wall–like structure along the BC scaffold consisting of immigrated vascular smooth muscle cells and a homogeneous endothelialization of the inner graft surface without signs of prothrombogenic or inflammatory potential. Scanning electron microscopy revealed a confluent luminal endothelial cell layer and the immigration of vascular smooth muscle cells into the BC matrix. Conclusions BC grafts provide a scaffold for the neoformation of a three-layered vascular wall exhibit attractive properties for their use in future TEBV programs for cardiovascular surgery.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>24726059</pmid><doi>10.1016/j.jss.2014.02.011</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-4804
ispartof The Journal of surgical research, 2014-06, Vol.189 (2), p.340-347
issn 0022-4804
1095-8673
language eng
recordid cdi_proquest_miscellaneous_1526133306
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Animals
Arterioles
Artificial small-diameter vascular grafts
Bacterial cellulose
Blood Vessel Prosthesis
Blood Vessel Prosthesis Implantation
Cellulose
Feasibility Studies
Female
Foreign-Body Reaction
Gluconacetobacter xylinus
Materials Testing
Sheep
Surgery
Tissue Engineering
Tissue Scaffolds
Vascular Patency
Vascular surgery
Vascular tissue engineering
title In vivo application of tissue-engineered blood vessels of bacterial cellulose as small arterial substitutes: proof of concept?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T10%3A37%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20vivo%20application%20of%20tissue-engineered%20blood%20vessels%20of%20bacterial%20cellulose%20as%20small%20arterial%20substitutes:%20proof%20of%20concept?&rft.jtitle=The%20Journal%20of%20surgical%20research&rft.au=Scherner,%20Maximilian,%20MD&rft.date=2014-06-15&rft.volume=189&rft.issue=2&rft.spage=340&rft.epage=347&rft.pages=340-347&rft.issn=0022-4804&rft.eissn=1095-8673&rft_id=info:doi/10.1016/j.jss.2014.02.011&rft_dat=%3Cproquest_cross%3E1526133306%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1526133306&rft_id=info:pmid/24726059&rft_els_id=S0022480414001553&rfr_iscdi=true