1,2-Addition of Dihydrogen across Rhodium(III)–OMe Bonds

The Rh(III) complexes [(tbpy)2Rh(OMe)(L)][X] n (tbpy = 4,4′-di-tert-butyl-2,2′-bipyridyl; L = MeOH, n = 2, X = OTf (OTf = trifluoromethanesulfonate), TFA (TFA = trifluoroacetate); L = TFA, n = 1, X = OTf) have been shown to activate dihydrogen via net 1,2-addition of the H–H bond across the RhIII–OM...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inorganic chemistry 2014-05, Vol.53 (10), p.5328-5340
Hauptverfasser: Burgess, Samantha A, Devarajan, Deepa, Bolaño, Tamara, Ess, Daniel H, Gunnoe, T. Brent, Sabat, Michal, Myers, William H
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5340
container_issue 10
container_start_page 5328
container_title Inorganic chemistry
container_volume 53
creator Burgess, Samantha A
Devarajan, Deepa
Bolaño, Tamara
Ess, Daniel H
Gunnoe, T. Brent
Sabat, Michal
Myers, William H
description The Rh(III) complexes [(tbpy)2Rh(OMe)(L)][X] n (tbpy = 4,4′-di-tert-butyl-2,2′-bipyridyl; L = MeOH, n = 2, X = OTf (OTf = trifluoromethanesulfonate), TFA (TFA = trifluoroacetate); L = TFA, n = 1, X = OTf) have been shown to activate dihydrogen via net 1,2-addition of the H–H bond across the RhIII–OMe bond. The bis(methoxide) complex [(tbpy)2Rh(OMe)2][OTf] was synthesized by addition of CsOH·H2O in methanol to [(tbpy)2Rh(OTf)2][OTf] in CH3CN. The addition of HTFA to [(tbpy)2Rh(OMe)2][OTf] leads to the formation of [(tbpy)2Rh(OMe)(MeOH)][OTf][TFA], which exists in equilibrium with [(tbpy)2Rh(OMe)(TFA)][OTf]. The mixture of [(tbpy)2Rh(OMe)(MeOH)][OTf][TFA] and [(tbpy)2Rh(OMe)(TFA)][OTf] activates dihydrogen at 68 °C to give methanol and [(tbpy)2Rh(H)(TFA)][OTf]. Studies indicate that the activation of dihydrogen has a first-order dependence on the Rh(III) methoxide complex and a dependence on hydrogen that is between zero and first order. Combined experimental and computational studies have led to a proposed mechanism for hydrogen activation by [(tbpy)2Rh(OMe)(MeOH)][OTf][TFA] that involves dissociation of MeOH, coordination of hydrogen, and 1,2-addition of hydrogen across the Rh–OMe bond. DFT calculations indicate that there is a substantial energy penalty for MeOH dissociation and a relatively flat energy surface for subsequent hydrogen coordination and activation.
doi_str_mv 10.1021/ic500636m
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1526129228</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1526129228</sourcerecordid><originalsourceid>FETCH-LOGICAL-a315t-c86d0c52162b2cf142b0997fd8ba2f99cefe05f827add4d02db51949238ab5043</originalsourceid><addsrcrecordid>eNptkM1Kw0AUhQdRbK0ufAHJRmjB6J2bzDTjrta_QKUgCu7CZH5spMnUTLPoznfwDX0So61dubp38fFxziHkmMI5BaQXhWIAPOLlDulShhAyCi-7pAvQ_pRz0SEH3r8BgIhivk86GCfAhxHtkkt6huFI62JZuCpwNrguZitdu1dTBVLVzvvgceZ00ZT9NE0HXx-f0wcTXLlK-0OyZ-Xcm6PN7ZHn25un8X04md6l49EklBFly1AlXINiSDnmqCyNMQchhlYnuUQrhDLWALMJDqXWsQbUOaMiFhglMmcQRz3SX3sXtXtvjF9mZeGVmc9lZVzjs7YxpygQkxYdrNHf5LWx2aIuSlmvMgrZz1TZdqqWPdlom7w0ekv-bdMCp2tAKp-9uaau2pb_iL4B90pt5Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1526129228</pqid></control><display><type>article</type><title>1,2-Addition of Dihydrogen across Rhodium(III)–OMe Bonds</title><source>ACS Publications</source><creator>Burgess, Samantha A ; Devarajan, Deepa ; Bolaño, Tamara ; Ess, Daniel H ; Gunnoe, T. Brent ; Sabat, Michal ; Myers, William H</creator><creatorcontrib>Burgess, Samantha A ; Devarajan, Deepa ; Bolaño, Tamara ; Ess, Daniel H ; Gunnoe, T. Brent ; Sabat, Michal ; Myers, William H</creatorcontrib><description>The Rh(III) complexes [(tbpy)2Rh(OMe)(L)][X] n (tbpy = 4,4′-di-tert-butyl-2,2′-bipyridyl; L = MeOH, n = 2, X = OTf (OTf = trifluoromethanesulfonate), TFA (TFA = trifluoroacetate); L = TFA, n = 1, X = OTf) have been shown to activate dihydrogen via net 1,2-addition of the H–H bond across the RhIII–OMe bond. The bis(methoxide) complex [(tbpy)2Rh(OMe)2][OTf] was synthesized by addition of CsOH·H2O in methanol to [(tbpy)2Rh(OTf)2][OTf] in CH3CN. The addition of HTFA to [(tbpy)2Rh(OMe)2][OTf] leads to the formation of [(tbpy)2Rh(OMe)(MeOH)][OTf][TFA], which exists in equilibrium with [(tbpy)2Rh(OMe)(TFA)][OTf]. The mixture of [(tbpy)2Rh(OMe)(MeOH)][OTf][TFA] and [(tbpy)2Rh(OMe)(TFA)][OTf] activates dihydrogen at 68 °C to give methanol and [(tbpy)2Rh(H)(TFA)][OTf]. Studies indicate that the activation of dihydrogen has a first-order dependence on the Rh(III) methoxide complex and a dependence on hydrogen that is between zero and first order. Combined experimental and computational studies have led to a proposed mechanism for hydrogen activation by [(tbpy)2Rh(OMe)(MeOH)][OTf][TFA] that involves dissociation of MeOH, coordination of hydrogen, and 1,2-addition of hydrogen across the Rh–OMe bond. DFT calculations indicate that there is a substantial energy penalty for MeOH dissociation and a relatively flat energy surface for subsequent hydrogen coordination and activation.</description><identifier>ISSN: 0020-1669</identifier><identifier>EISSN: 1520-510X</identifier><identifier>DOI: 10.1021/ic500636m</identifier><identifier>PMID: 24806731</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Inorganic chemistry, 2014-05, Vol.53 (10), p.5328-5340</ispartof><rights>Copyright © 2014 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a315t-c86d0c52162b2cf142b0997fd8ba2f99cefe05f827add4d02db51949238ab5043</citedby><cites>FETCH-LOGICAL-a315t-c86d0c52162b2cf142b0997fd8ba2f99cefe05f827add4d02db51949238ab5043</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ic500636m$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ic500636m$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24806731$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Burgess, Samantha A</creatorcontrib><creatorcontrib>Devarajan, Deepa</creatorcontrib><creatorcontrib>Bolaño, Tamara</creatorcontrib><creatorcontrib>Ess, Daniel H</creatorcontrib><creatorcontrib>Gunnoe, T. Brent</creatorcontrib><creatorcontrib>Sabat, Michal</creatorcontrib><creatorcontrib>Myers, William H</creatorcontrib><title>1,2-Addition of Dihydrogen across Rhodium(III)–OMe Bonds</title><title>Inorganic chemistry</title><addtitle>Inorg. Chem</addtitle><description>The Rh(III) complexes [(tbpy)2Rh(OMe)(L)][X] n (tbpy = 4,4′-di-tert-butyl-2,2′-bipyridyl; L = MeOH, n = 2, X = OTf (OTf = trifluoromethanesulfonate), TFA (TFA = trifluoroacetate); L = TFA, n = 1, X = OTf) have been shown to activate dihydrogen via net 1,2-addition of the H–H bond across the RhIII–OMe bond. The bis(methoxide) complex [(tbpy)2Rh(OMe)2][OTf] was synthesized by addition of CsOH·H2O in methanol to [(tbpy)2Rh(OTf)2][OTf] in CH3CN. The addition of HTFA to [(tbpy)2Rh(OMe)2][OTf] leads to the formation of [(tbpy)2Rh(OMe)(MeOH)][OTf][TFA], which exists in equilibrium with [(tbpy)2Rh(OMe)(TFA)][OTf]. The mixture of [(tbpy)2Rh(OMe)(MeOH)][OTf][TFA] and [(tbpy)2Rh(OMe)(TFA)][OTf] activates dihydrogen at 68 °C to give methanol and [(tbpy)2Rh(H)(TFA)][OTf]. Studies indicate that the activation of dihydrogen has a first-order dependence on the Rh(III) methoxide complex and a dependence on hydrogen that is between zero and first order. Combined experimental and computational studies have led to a proposed mechanism for hydrogen activation by [(tbpy)2Rh(OMe)(MeOH)][OTf][TFA] that involves dissociation of MeOH, coordination of hydrogen, and 1,2-addition of hydrogen across the Rh–OMe bond. DFT calculations indicate that there is a substantial energy penalty for MeOH dissociation and a relatively flat energy surface for subsequent hydrogen coordination and activation.</description><issn>0020-1669</issn><issn>1520-510X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNptkM1Kw0AUhQdRbK0ufAHJRmjB6J2bzDTjrta_QKUgCu7CZH5spMnUTLPoznfwDX0So61dubp38fFxziHkmMI5BaQXhWIAPOLlDulShhAyCi-7pAvQ_pRz0SEH3r8BgIhivk86GCfAhxHtkkt6huFI62JZuCpwNrguZitdu1dTBVLVzvvgceZ00ZT9NE0HXx-f0wcTXLlK-0OyZ-Xcm6PN7ZHn25un8X04md6l49EklBFly1AlXINiSDnmqCyNMQchhlYnuUQrhDLWALMJDqXWsQbUOaMiFhglMmcQRz3SX3sXtXtvjF9mZeGVmc9lZVzjs7YxpygQkxYdrNHf5LWx2aIuSlmvMgrZz1TZdqqWPdlom7w0ekv-bdMCp2tAKp-9uaau2pb_iL4B90pt5Q</recordid><startdate>20140519</startdate><enddate>20140519</enddate><creator>Burgess, Samantha A</creator><creator>Devarajan, Deepa</creator><creator>Bolaño, Tamara</creator><creator>Ess, Daniel H</creator><creator>Gunnoe, T. Brent</creator><creator>Sabat, Michal</creator><creator>Myers, William H</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20140519</creationdate><title>1,2-Addition of Dihydrogen across Rhodium(III)–OMe Bonds</title><author>Burgess, Samantha A ; Devarajan, Deepa ; Bolaño, Tamara ; Ess, Daniel H ; Gunnoe, T. Brent ; Sabat, Michal ; Myers, William H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a315t-c86d0c52162b2cf142b0997fd8ba2f99cefe05f827add4d02db51949238ab5043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Burgess, Samantha A</creatorcontrib><creatorcontrib>Devarajan, Deepa</creatorcontrib><creatorcontrib>Bolaño, Tamara</creatorcontrib><creatorcontrib>Ess, Daniel H</creatorcontrib><creatorcontrib>Gunnoe, T. Brent</creatorcontrib><creatorcontrib>Sabat, Michal</creatorcontrib><creatorcontrib>Myers, William H</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Inorganic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Burgess, Samantha A</au><au>Devarajan, Deepa</au><au>Bolaño, Tamara</au><au>Ess, Daniel H</au><au>Gunnoe, T. Brent</au><au>Sabat, Michal</au><au>Myers, William H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>1,2-Addition of Dihydrogen across Rhodium(III)–OMe Bonds</atitle><jtitle>Inorganic chemistry</jtitle><addtitle>Inorg. Chem</addtitle><date>2014-05-19</date><risdate>2014</risdate><volume>53</volume><issue>10</issue><spage>5328</spage><epage>5340</epage><pages>5328-5340</pages><issn>0020-1669</issn><eissn>1520-510X</eissn><abstract>The Rh(III) complexes [(tbpy)2Rh(OMe)(L)][X] n (tbpy = 4,4′-di-tert-butyl-2,2′-bipyridyl; L = MeOH, n = 2, X = OTf (OTf = trifluoromethanesulfonate), TFA (TFA = trifluoroacetate); L = TFA, n = 1, X = OTf) have been shown to activate dihydrogen via net 1,2-addition of the H–H bond across the RhIII–OMe bond. The bis(methoxide) complex [(tbpy)2Rh(OMe)2][OTf] was synthesized by addition of CsOH·H2O in methanol to [(tbpy)2Rh(OTf)2][OTf] in CH3CN. The addition of HTFA to [(tbpy)2Rh(OMe)2][OTf] leads to the formation of [(tbpy)2Rh(OMe)(MeOH)][OTf][TFA], which exists in equilibrium with [(tbpy)2Rh(OMe)(TFA)][OTf]. The mixture of [(tbpy)2Rh(OMe)(MeOH)][OTf][TFA] and [(tbpy)2Rh(OMe)(TFA)][OTf] activates dihydrogen at 68 °C to give methanol and [(tbpy)2Rh(H)(TFA)][OTf]. Studies indicate that the activation of dihydrogen has a first-order dependence on the Rh(III) methoxide complex and a dependence on hydrogen that is between zero and first order. Combined experimental and computational studies have led to a proposed mechanism for hydrogen activation by [(tbpy)2Rh(OMe)(MeOH)][OTf][TFA] that involves dissociation of MeOH, coordination of hydrogen, and 1,2-addition of hydrogen across the Rh–OMe bond. DFT calculations indicate that there is a substantial energy penalty for MeOH dissociation and a relatively flat energy surface for subsequent hydrogen coordination and activation.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>24806731</pmid><doi>10.1021/ic500636m</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-1669
ispartof Inorganic chemistry, 2014-05, Vol.53 (10), p.5328-5340
issn 0020-1669
1520-510X
language eng
recordid cdi_proquest_miscellaneous_1526129228
source ACS Publications
title 1,2-Addition of Dihydrogen across Rhodium(III)–OMe Bonds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T20%3A53%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=1,2-Addition%20of%20Dihydrogen%20across%20Rhodium(III)%E2%80%93OMe%20Bonds&rft.jtitle=Inorganic%20chemistry&rft.au=Burgess,%20Samantha%20A&rft.date=2014-05-19&rft.volume=53&rft.issue=10&rft.spage=5328&rft.epage=5340&rft.pages=5328-5340&rft.issn=0020-1669&rft.eissn=1520-510X&rft_id=info:doi/10.1021/ic500636m&rft_dat=%3Cproquest_cross%3E1526129228%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1526129228&rft_id=info:pmid/24806731&rfr_iscdi=true