Highly Thermal Conductive Copper Nanowire Composites with Ultralow Loading: Toward Applications as Thermal Interface Materials

Thermal interface materials (TIMs) are of ever-rising importance with the development of modern microelectronic devices. However, traditional TIMs exhibit low thermal conductivity even at high loading fractions. The use of high-aspect-ratio material is beneficial to achieve low percolation threshold...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2014-05, Vol.6 (9), p.6481-6486
Hauptverfasser: Wang, Shouling, Cheng, Yin, Wang, Ranran, Sun, Jing, Gao, Lian
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Thermal interface materials (TIMs) are of ever-rising importance with the development of modern microelectronic devices. However, traditional TIMs exhibit low thermal conductivity even at high loading fractions. The use of high-aspect-ratio material is beneficial to achieve low percolation threshold for nanocomposites. In this work, single crystalline copper nanowires with large aspect ratio were used as filling materials for the first time. A thermal conductivity of 2.46 W/mK was obtained at an ultralow loading fraction, ∼0.9 vol %, which was enhanced by 1350% compared with plain matrix. Such an excellent performance makes copper nanowires attractive fillers for high-performance TIMs.
ISSN:1944-8244
1944-8252
DOI:10.1021/am500009p