Mitigating Voltage Fade in Cathode Materials by Improving the Atomic Level Uniformity of Elemental Distribution
Lithium- and manganese-rich (LMR) layered-structure materials are very promising cathodes for high energy density lithium-ion batteries. However, their voltage fading mechanism and its relationships with fundamental structural changes are far from being well understood. Here we report for the first...
Gespeichert in:
Veröffentlicht in: | Nano Letters, 14(5):2628-2635 14(5):2628-2635, 2014-05, Vol.14 (5), p.2628-2635 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2635 |
---|---|
container_issue | 5 |
container_start_page | 2628 |
container_title | Nano Letters, 14(5):2628-2635 |
container_volume | 14 |
creator | Zheng, Jianming Gu, Meng Genc, Arda Xiao, Jie Xu, Pinghong Chen, Xilin Zhu, Zihua Zhao, Wenbo Pullan, Lee Wang, Chongmin Zhang, Ji-Guang |
description | Lithium- and manganese-rich (LMR) layered-structure materials are very promising cathodes for high energy density lithium-ion batteries. However, their voltage fading mechanism and its relationships with fundamental structural changes are far from being well understood. Here we report for the first time the mitigation of voltage and energy fade of LMR cathodes by improving the atomic level spatial uniformity of the chemical species. The results reveal that LMR cathodes (Li[Li0.2Ni0.2M0.6]O2) prepared by coprecipitation and sol–gel methods, which are dominated by a LiMO2 type R3̅m structure, show significant nonuniform Ni distribution at particle surfaces. In contrast, the LMR cathode prepared by a hydrothermal assisted method is dominated by a Li2MO3 type C2/m structure with minimal Ni-rich surfaces. The samples with uniform atomic level spatial distribution demonstrate much better capacity retention and much smaller voltage fade as compared to those with significant nonuniform Ni distribution. The fundamental findings on the direct correlation between the atomic level spatial distribution of the chemical species and the functional stability of the materials may also guide the design of other energy storage materials with enhanced stabilities. |
doi_str_mv | 10.1021/nl500486y |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_1524818240</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1524818240</sourcerecordid><originalsourceid>FETCH-LOGICAL-a438t-648c5b19b2624ccb6bca1624bd07f1004b079155b7f7f47c5197a60c20b67cce3</originalsourceid><addsrcrecordid>eNpt0cFuEzEQBmALgWgpHHgBZCFVoofAeNde7x6r0EKlVFwoV8ueeBNXXrvY3kp5e1wlpJee_B8-zXhmCPnI4CuDhn0LXgDwvtu9IqdMtLDohqF5fcw9PyHvcr4HgKEV8JacNFyCHGR_SuKtK26jiwsb-if6ojeWXuu1pS7QpS7bWOOtLjY57TM1O3ozPaT4-MTL1tLLEieHdGUfrad3wY0xTa7saBzplbeTDUV7-t3lkpyZi4vhPXkz1kr2w-E9I3fXV7-XPxerXz9ulperheZtXxYd71EYNpimazii6QxqVqNZgxxZHdbU_zMhjBzlyCUKNkjdATZgOolo2zPyeV835uJURlcsbjGGYLEoxsQATFb0ZY_qSH9nm4uaXEbrvQ42zlkx0fCe9Q2HSi_2FFPMOdlRPSQ36bRTDNTTEdTxCNV-OpSdzWTXR_l_6xWcH4DOqP2YdECXn10vGLQMnp3GrO7jnEJd2QsN_wFIG5qN</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1524818240</pqid></control><display><type>article</type><title>Mitigating Voltage Fade in Cathode Materials by Improving the Atomic Level Uniformity of Elemental Distribution</title><source>ACS Publications</source><creator>Zheng, Jianming ; Gu, Meng ; Genc, Arda ; Xiao, Jie ; Xu, Pinghong ; Chen, Xilin ; Zhu, Zihua ; Zhao, Wenbo ; Pullan, Lee ; Wang, Chongmin ; Zhang, Ji-Guang</creator><creatorcontrib>Zheng, Jianming ; Gu, Meng ; Genc, Arda ; Xiao, Jie ; Xu, Pinghong ; Chen, Xilin ; Zhu, Zihua ; Zhao, Wenbo ; Pullan, Lee ; Wang, Chongmin ; Zhang, Ji-Guang ; Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</creatorcontrib><description>Lithium- and manganese-rich (LMR) layered-structure materials are very promising cathodes for high energy density lithium-ion batteries. However, their voltage fading mechanism and its relationships with fundamental structural changes are far from being well understood. Here we report for the first time the mitigation of voltage and energy fade of LMR cathodes by improving the atomic level spatial uniformity of the chemical species. The results reveal that LMR cathodes (Li[Li0.2Ni0.2M0.6]O2) prepared by coprecipitation and sol–gel methods, which are dominated by a LiMO2 type R3̅m structure, show significant nonuniform Ni distribution at particle surfaces. In contrast, the LMR cathode prepared by a hydrothermal assisted method is dominated by a Li2MO3 type C2/m structure with minimal Ni-rich surfaces. The samples with uniform atomic level spatial distribution demonstrate much better capacity retention and much smaller voltage fade as compared to those with significant nonuniform Ni distribution. The fundamental findings on the direct correlation between the atomic level spatial distribution of the chemical species and the functional stability of the materials may also guide the design of other energy storage materials with enhanced stabilities.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/nl500486y</identifier><identifier>PMID: 24707978</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Applied sciences ; Cation mixing ; Chemical synthesis methods ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Direct energy conversion and energy accumulation ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Electrochemical conversion: primary and secondary batteries, fuel cells ; Environmental Molecular Sciences Laboratory ; Equations of state, phase equilibria, and phase transitions ; Exact sciences and technology ; Growth from solutions ; Layered structure ; Lithium ion battery ; Materials science ; Methods of crystal growth; physics of crystal growth ; Methods of nanofabrication ; Ni segregation ; Physics ; Specific phase transitions ; Spinel formation ; Structural transitions in nanoscale materials ; Voltage fade</subject><ispartof>Nano Letters, 14(5):2628-2635, 2014-05, Vol.14 (5), p.2628-2635</ispartof><rights>Copyright © 2014 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a438t-648c5b19b2624ccb6bca1624bd07f1004b079155b7f7f47c5197a60c20b67cce3</citedby><cites>FETCH-LOGICAL-a438t-648c5b19b2624ccb6bca1624bd07f1004b079155b7f7f47c5197a60c20b67cce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/nl500486y$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/nl500486y$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28510310$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24707978$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1159017$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zheng, Jianming</creatorcontrib><creatorcontrib>Gu, Meng</creatorcontrib><creatorcontrib>Genc, Arda</creatorcontrib><creatorcontrib>Xiao, Jie</creatorcontrib><creatorcontrib>Xu, Pinghong</creatorcontrib><creatorcontrib>Chen, Xilin</creatorcontrib><creatorcontrib>Zhu, Zihua</creatorcontrib><creatorcontrib>Zhao, Wenbo</creatorcontrib><creatorcontrib>Pullan, Lee</creatorcontrib><creatorcontrib>Wang, Chongmin</creatorcontrib><creatorcontrib>Zhang, Ji-Guang</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</creatorcontrib><title>Mitigating Voltage Fade in Cathode Materials by Improving the Atomic Level Uniformity of Elemental Distribution</title><title>Nano Letters, 14(5):2628-2635</title><addtitle>Nano Lett</addtitle><description>Lithium- and manganese-rich (LMR) layered-structure materials are very promising cathodes for high energy density lithium-ion batteries. However, their voltage fading mechanism and its relationships with fundamental structural changes are far from being well understood. Here we report for the first time the mitigation of voltage and energy fade of LMR cathodes by improving the atomic level spatial uniformity of the chemical species. The results reveal that LMR cathodes (Li[Li0.2Ni0.2M0.6]O2) prepared by coprecipitation and sol–gel methods, which are dominated by a LiMO2 type R3̅m structure, show significant nonuniform Ni distribution at particle surfaces. In contrast, the LMR cathode prepared by a hydrothermal assisted method is dominated by a Li2MO3 type C2/m structure with minimal Ni-rich surfaces. The samples with uniform atomic level spatial distribution demonstrate much better capacity retention and much smaller voltage fade as compared to those with significant nonuniform Ni distribution. The fundamental findings on the direct correlation between the atomic level spatial distribution of the chemical species and the functional stability of the materials may also guide the design of other energy storage materials with enhanced stabilities.</description><subject>Applied sciences</subject><subject>Cation mixing</subject><subject>Chemical synthesis methods</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Electrochemical conversion: primary and secondary batteries, fuel cells</subject><subject>Environmental Molecular Sciences Laboratory</subject><subject>Equations of state, phase equilibria, and phase transitions</subject><subject>Exact sciences and technology</subject><subject>Growth from solutions</subject><subject>Layered structure</subject><subject>Lithium ion battery</subject><subject>Materials science</subject><subject>Methods of crystal growth; physics of crystal growth</subject><subject>Methods of nanofabrication</subject><subject>Ni segregation</subject><subject>Physics</subject><subject>Specific phase transitions</subject><subject>Spinel formation</subject><subject>Structural transitions in nanoscale materials</subject><subject>Voltage fade</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpt0cFuEzEQBmALgWgpHHgBZCFVoofAeNde7x6r0EKlVFwoV8ueeBNXXrvY3kp5e1wlpJee_B8-zXhmCPnI4CuDhn0LXgDwvtu9IqdMtLDohqF5fcw9PyHvcr4HgKEV8JacNFyCHGR_SuKtK26jiwsb-if6ojeWXuu1pS7QpS7bWOOtLjY57TM1O3ozPaT4-MTL1tLLEieHdGUfrad3wY0xTa7saBzplbeTDUV7-t3lkpyZi4vhPXkz1kr2w-E9I3fXV7-XPxerXz9ulperheZtXxYd71EYNpimazii6QxqVqNZgxxZHdbU_zMhjBzlyCUKNkjdATZgOolo2zPyeV835uJURlcsbjGGYLEoxsQATFb0ZY_qSH9nm4uaXEbrvQ42zlkx0fCe9Q2HSi_2FFPMOdlRPSQ36bRTDNTTEdTxCNV-OpSdzWTXR_l_6xWcH4DOqP2YdECXn10vGLQMnp3GrO7jnEJd2QsN_wFIG5qN</recordid><startdate>20140514</startdate><enddate>20140514</enddate><creator>Zheng, Jianming</creator><creator>Gu, Meng</creator><creator>Genc, Arda</creator><creator>Xiao, Jie</creator><creator>Xu, Pinghong</creator><creator>Chen, Xilin</creator><creator>Zhu, Zihua</creator><creator>Zhao, Wenbo</creator><creator>Pullan, Lee</creator><creator>Wang, Chongmin</creator><creator>Zhang, Ji-Guang</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20140514</creationdate><title>Mitigating Voltage Fade in Cathode Materials by Improving the Atomic Level Uniformity of Elemental Distribution</title><author>Zheng, Jianming ; Gu, Meng ; Genc, Arda ; Xiao, Jie ; Xu, Pinghong ; Chen, Xilin ; Zhu, Zihua ; Zhao, Wenbo ; Pullan, Lee ; Wang, Chongmin ; Zhang, Ji-Guang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a438t-648c5b19b2624ccb6bca1624bd07f1004b079155b7f7f47c5197a60c20b67cce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>Cation mixing</topic><topic>Chemical synthesis methods</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Electrochemical conversion: primary and secondary batteries, fuel cells</topic><topic>Environmental Molecular Sciences Laboratory</topic><topic>Equations of state, phase equilibria, and phase transitions</topic><topic>Exact sciences and technology</topic><topic>Growth from solutions</topic><topic>Layered structure</topic><topic>Lithium ion battery</topic><topic>Materials science</topic><topic>Methods of crystal growth; physics of crystal growth</topic><topic>Methods of nanofabrication</topic><topic>Ni segregation</topic><topic>Physics</topic><topic>Specific phase transitions</topic><topic>Spinel formation</topic><topic>Structural transitions in nanoscale materials</topic><topic>Voltage fade</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Jianming</creatorcontrib><creatorcontrib>Gu, Meng</creatorcontrib><creatorcontrib>Genc, Arda</creatorcontrib><creatorcontrib>Xiao, Jie</creatorcontrib><creatorcontrib>Xu, Pinghong</creatorcontrib><creatorcontrib>Chen, Xilin</creatorcontrib><creatorcontrib>Zhu, Zihua</creatorcontrib><creatorcontrib>Zhao, Wenbo</creatorcontrib><creatorcontrib>Pullan, Lee</creatorcontrib><creatorcontrib>Wang, Chongmin</creatorcontrib><creatorcontrib>Zhang, Ji-Guang</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Nano Letters, 14(5):2628-2635</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Jianming</au><au>Gu, Meng</au><au>Genc, Arda</au><au>Xiao, Jie</au><au>Xu, Pinghong</au><au>Chen, Xilin</au><au>Zhu, Zihua</au><au>Zhao, Wenbo</au><au>Pullan, Lee</au><au>Wang, Chongmin</au><au>Zhang, Ji-Guang</au><aucorp>Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mitigating Voltage Fade in Cathode Materials by Improving the Atomic Level Uniformity of Elemental Distribution</atitle><jtitle>Nano Letters, 14(5):2628-2635</jtitle><addtitle>Nano Lett</addtitle><date>2014-05-14</date><risdate>2014</risdate><volume>14</volume><issue>5</issue><spage>2628</spage><epage>2635</epage><pages>2628-2635</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Lithium- and manganese-rich (LMR) layered-structure materials are very promising cathodes for high energy density lithium-ion batteries. However, their voltage fading mechanism and its relationships with fundamental structural changes are far from being well understood. Here we report for the first time the mitigation of voltage and energy fade of LMR cathodes by improving the atomic level spatial uniformity of the chemical species. The results reveal that LMR cathodes (Li[Li0.2Ni0.2M0.6]O2) prepared by coprecipitation and sol–gel methods, which are dominated by a LiMO2 type R3̅m structure, show significant nonuniform Ni distribution at particle surfaces. In contrast, the LMR cathode prepared by a hydrothermal assisted method is dominated by a Li2MO3 type C2/m structure with minimal Ni-rich surfaces. The samples with uniform atomic level spatial distribution demonstrate much better capacity retention and much smaller voltage fade as compared to those with significant nonuniform Ni distribution. The fundamental findings on the direct correlation between the atomic level spatial distribution of the chemical species and the functional stability of the materials may also guide the design of other energy storage materials with enhanced stabilities.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>24707978</pmid><doi>10.1021/nl500486y</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-6984 |
ispartof | Nano Letters, 14(5):2628-2635, 2014-05, Vol.14 (5), p.2628-2635 |
issn | 1530-6984 1530-6992 |
language | eng |
recordid | cdi_proquest_miscellaneous_1524818240 |
source | ACS Publications |
subjects | Applied sciences Cation mixing Chemical synthesis methods Condensed matter: structure, mechanical and thermal properties Cross-disciplinary physics: materials science rheology Direct energy conversion and energy accumulation Electrical engineering. Electrical power engineering Electrical power engineering Electrochemical conversion: primary and secondary batteries, fuel cells Environmental Molecular Sciences Laboratory Equations of state, phase equilibria, and phase transitions Exact sciences and technology Growth from solutions Layered structure Lithium ion battery Materials science Methods of crystal growth physics of crystal growth Methods of nanofabrication Ni segregation Physics Specific phase transitions Spinel formation Structural transitions in nanoscale materials Voltage fade |
title | Mitigating Voltage Fade in Cathode Materials by Improving the Atomic Level Uniformity of Elemental Distribution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T12%3A47%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mitigating%20Voltage%20Fade%20in%20Cathode%20Materials%20by%20Improving%20the%20Atomic%20Level%20Uniformity%20of%20Elemental%20Distribution&rft.jtitle=Nano%20Letters,%2014(5):2628-2635&rft.au=Zheng,%20Jianming&rft.aucorp=Pacific%20Northwest%20National%20Laboratory%20(PNNL),%20Richland,%20WA%20(US),%20Environmental%20Molecular%20Sciences%20Laboratory%20(EMSL)&rft.date=2014-05-14&rft.volume=14&rft.issue=5&rft.spage=2628&rft.epage=2635&rft.pages=2628-2635&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/nl500486y&rft_dat=%3Cproquest_osti_%3E1524818240%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1524818240&rft_id=info:pmid/24707978&rfr_iscdi=true |