Mitigating Voltage Fade in Cathode Materials by Improving the Atomic Level Uniformity of Elemental Distribution

Lithium- and manganese-rich (LMR) layered-structure materials are very promising cathodes for high energy density lithium-ion batteries. However, their voltage fading mechanism and its relationships with fundamental structural changes are far from being well understood. Here we report for the first...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano Letters, 14(5):2628-2635 14(5):2628-2635, 2014-05, Vol.14 (5), p.2628-2635
Hauptverfasser: Zheng, Jianming, Gu, Meng, Genc, Arda, Xiao, Jie, Xu, Pinghong, Chen, Xilin, Zhu, Zihua, Zhao, Wenbo, Pullan, Lee, Wang, Chongmin, Zhang, Ji-Guang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2635
container_issue 5
container_start_page 2628
container_title Nano Letters, 14(5):2628-2635
container_volume 14
creator Zheng, Jianming
Gu, Meng
Genc, Arda
Xiao, Jie
Xu, Pinghong
Chen, Xilin
Zhu, Zihua
Zhao, Wenbo
Pullan, Lee
Wang, Chongmin
Zhang, Ji-Guang
description Lithium- and manganese-rich (LMR) layered-structure materials are very promising cathodes for high energy density lithium-ion batteries. However, their voltage fading mechanism and its relationships with fundamental structural changes are far from being well understood. Here we report for the first time the mitigation of voltage and energy fade of LMR cathodes by improving the atomic level spatial uniformity of the chemical species. The results reveal that LMR cathodes (Li[Li0.2Ni0.2M0.6]O2) prepared by coprecipitation and sol–gel methods, which are dominated by a LiMO2 type R3̅m structure, show significant nonuniform Ni distribution at particle surfaces. In contrast, the LMR cathode prepared by a hydrothermal assisted method is dominated by a Li2MO3 type C2/m structure with minimal Ni-rich surfaces. The samples with uniform atomic level spatial distribution demonstrate much better capacity retention and much smaller voltage fade as compared to those with significant nonuniform Ni distribution. The fundamental findings on the direct correlation between the atomic level spatial distribution of the chemical species and the functional stability of the materials may also guide the design of other energy storage materials with enhanced stabilities.
doi_str_mv 10.1021/nl500486y
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_1524818240</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1524818240</sourcerecordid><originalsourceid>FETCH-LOGICAL-a438t-648c5b19b2624ccb6bca1624bd07f1004b079155b7f7f47c5197a60c20b67cce3</originalsourceid><addsrcrecordid>eNpt0cFuEzEQBmALgWgpHHgBZCFVoofAeNde7x6r0EKlVFwoV8ueeBNXXrvY3kp5e1wlpJee_B8-zXhmCPnI4CuDhn0LXgDwvtu9IqdMtLDohqF5fcw9PyHvcr4HgKEV8JacNFyCHGR_SuKtK26jiwsb-if6ojeWXuu1pS7QpS7bWOOtLjY57TM1O3ozPaT4-MTL1tLLEieHdGUfrad3wY0xTa7saBzplbeTDUV7-t3lkpyZi4vhPXkz1kr2w-E9I3fXV7-XPxerXz9ulperheZtXxYd71EYNpimazii6QxqVqNZgxxZHdbU_zMhjBzlyCUKNkjdATZgOolo2zPyeV835uJURlcsbjGGYLEoxsQATFb0ZY_qSH9nm4uaXEbrvQ42zlkx0fCe9Q2HSi_2FFPMOdlRPSQ36bRTDNTTEdTxCNV-OpSdzWTXR_l_6xWcH4DOqP2YdECXn10vGLQMnp3GrO7jnEJd2QsN_wFIG5qN</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1524818240</pqid></control><display><type>article</type><title>Mitigating Voltage Fade in Cathode Materials by Improving the Atomic Level Uniformity of Elemental Distribution</title><source>ACS Publications</source><creator>Zheng, Jianming ; Gu, Meng ; Genc, Arda ; Xiao, Jie ; Xu, Pinghong ; Chen, Xilin ; Zhu, Zihua ; Zhao, Wenbo ; Pullan, Lee ; Wang, Chongmin ; Zhang, Ji-Guang</creator><creatorcontrib>Zheng, Jianming ; Gu, Meng ; Genc, Arda ; Xiao, Jie ; Xu, Pinghong ; Chen, Xilin ; Zhu, Zihua ; Zhao, Wenbo ; Pullan, Lee ; Wang, Chongmin ; Zhang, Ji-Guang ; Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</creatorcontrib><description>Lithium- and manganese-rich (LMR) layered-structure materials are very promising cathodes for high energy density lithium-ion batteries. However, their voltage fading mechanism and its relationships with fundamental structural changes are far from being well understood. Here we report for the first time the mitigation of voltage and energy fade of LMR cathodes by improving the atomic level spatial uniformity of the chemical species. The results reveal that LMR cathodes (Li[Li0.2Ni0.2M0.6]O2) prepared by coprecipitation and sol–gel methods, which are dominated by a LiMO2 type R3̅m structure, show significant nonuniform Ni distribution at particle surfaces. In contrast, the LMR cathode prepared by a hydrothermal assisted method is dominated by a Li2MO3 type C2/m structure with minimal Ni-rich surfaces. The samples with uniform atomic level spatial distribution demonstrate much better capacity retention and much smaller voltage fade as compared to those with significant nonuniform Ni distribution. The fundamental findings on the direct correlation between the atomic level spatial distribution of the chemical species and the functional stability of the materials may also guide the design of other energy storage materials with enhanced stabilities.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/nl500486y</identifier><identifier>PMID: 24707978</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Applied sciences ; Cation mixing ; Chemical synthesis methods ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Direct energy conversion and energy accumulation ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Electrochemical conversion: primary and secondary batteries, fuel cells ; Environmental Molecular Sciences Laboratory ; Equations of state, phase equilibria, and phase transitions ; Exact sciences and technology ; Growth from solutions ; Layered structure ; Lithium ion battery ; Materials science ; Methods of crystal growth; physics of crystal growth ; Methods of nanofabrication ; Ni segregation ; Physics ; Specific phase transitions ; Spinel formation ; Structural transitions in nanoscale materials ; Voltage fade</subject><ispartof>Nano Letters, 14(5):2628-2635, 2014-05, Vol.14 (5), p.2628-2635</ispartof><rights>Copyright © 2014 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a438t-648c5b19b2624ccb6bca1624bd07f1004b079155b7f7f47c5197a60c20b67cce3</citedby><cites>FETCH-LOGICAL-a438t-648c5b19b2624ccb6bca1624bd07f1004b079155b7f7f47c5197a60c20b67cce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/nl500486y$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/nl500486y$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28510310$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24707978$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1159017$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zheng, Jianming</creatorcontrib><creatorcontrib>Gu, Meng</creatorcontrib><creatorcontrib>Genc, Arda</creatorcontrib><creatorcontrib>Xiao, Jie</creatorcontrib><creatorcontrib>Xu, Pinghong</creatorcontrib><creatorcontrib>Chen, Xilin</creatorcontrib><creatorcontrib>Zhu, Zihua</creatorcontrib><creatorcontrib>Zhao, Wenbo</creatorcontrib><creatorcontrib>Pullan, Lee</creatorcontrib><creatorcontrib>Wang, Chongmin</creatorcontrib><creatorcontrib>Zhang, Ji-Guang</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</creatorcontrib><title>Mitigating Voltage Fade in Cathode Materials by Improving the Atomic Level Uniformity of Elemental Distribution</title><title>Nano Letters, 14(5):2628-2635</title><addtitle>Nano Lett</addtitle><description>Lithium- and manganese-rich (LMR) layered-structure materials are very promising cathodes for high energy density lithium-ion batteries. However, their voltage fading mechanism and its relationships with fundamental structural changes are far from being well understood. Here we report for the first time the mitigation of voltage and energy fade of LMR cathodes by improving the atomic level spatial uniformity of the chemical species. The results reveal that LMR cathodes (Li[Li0.2Ni0.2M0.6]O2) prepared by coprecipitation and sol–gel methods, which are dominated by a LiMO2 type R3̅m structure, show significant nonuniform Ni distribution at particle surfaces. In contrast, the LMR cathode prepared by a hydrothermal assisted method is dominated by a Li2MO3 type C2/m structure with minimal Ni-rich surfaces. The samples with uniform atomic level spatial distribution demonstrate much better capacity retention and much smaller voltage fade as compared to those with significant nonuniform Ni distribution. The fundamental findings on the direct correlation between the atomic level spatial distribution of the chemical species and the functional stability of the materials may also guide the design of other energy storage materials with enhanced stabilities.</description><subject>Applied sciences</subject><subject>Cation mixing</subject><subject>Chemical synthesis methods</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Electrochemical conversion: primary and secondary batteries, fuel cells</subject><subject>Environmental Molecular Sciences Laboratory</subject><subject>Equations of state, phase equilibria, and phase transitions</subject><subject>Exact sciences and technology</subject><subject>Growth from solutions</subject><subject>Layered structure</subject><subject>Lithium ion battery</subject><subject>Materials science</subject><subject>Methods of crystal growth; physics of crystal growth</subject><subject>Methods of nanofabrication</subject><subject>Ni segregation</subject><subject>Physics</subject><subject>Specific phase transitions</subject><subject>Spinel formation</subject><subject>Structural transitions in nanoscale materials</subject><subject>Voltage fade</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpt0cFuEzEQBmALgWgpHHgBZCFVoofAeNde7x6r0EKlVFwoV8ueeBNXXrvY3kp5e1wlpJee_B8-zXhmCPnI4CuDhn0LXgDwvtu9IqdMtLDohqF5fcw9PyHvcr4HgKEV8JacNFyCHGR_SuKtK26jiwsb-if6ojeWXuu1pS7QpS7bWOOtLjY57TM1O3ozPaT4-MTL1tLLEieHdGUfrad3wY0xTa7saBzplbeTDUV7-t3lkpyZi4vhPXkz1kr2w-E9I3fXV7-XPxerXz9ulperheZtXxYd71EYNpimazii6QxqVqNZgxxZHdbU_zMhjBzlyCUKNkjdATZgOolo2zPyeV835uJURlcsbjGGYLEoxsQATFb0ZY_qSH9nm4uaXEbrvQ42zlkx0fCe9Q2HSi_2FFPMOdlRPSQ36bRTDNTTEdTxCNV-OpSdzWTXR_l_6xWcH4DOqP2YdECXn10vGLQMnp3GrO7jnEJd2QsN_wFIG5qN</recordid><startdate>20140514</startdate><enddate>20140514</enddate><creator>Zheng, Jianming</creator><creator>Gu, Meng</creator><creator>Genc, Arda</creator><creator>Xiao, Jie</creator><creator>Xu, Pinghong</creator><creator>Chen, Xilin</creator><creator>Zhu, Zihua</creator><creator>Zhao, Wenbo</creator><creator>Pullan, Lee</creator><creator>Wang, Chongmin</creator><creator>Zhang, Ji-Guang</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20140514</creationdate><title>Mitigating Voltage Fade in Cathode Materials by Improving the Atomic Level Uniformity of Elemental Distribution</title><author>Zheng, Jianming ; Gu, Meng ; Genc, Arda ; Xiao, Jie ; Xu, Pinghong ; Chen, Xilin ; Zhu, Zihua ; Zhao, Wenbo ; Pullan, Lee ; Wang, Chongmin ; Zhang, Ji-Guang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a438t-648c5b19b2624ccb6bca1624bd07f1004b079155b7f7f47c5197a60c20b67cce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>Cation mixing</topic><topic>Chemical synthesis methods</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Electrochemical conversion: primary and secondary batteries, fuel cells</topic><topic>Environmental Molecular Sciences Laboratory</topic><topic>Equations of state, phase equilibria, and phase transitions</topic><topic>Exact sciences and technology</topic><topic>Growth from solutions</topic><topic>Layered structure</topic><topic>Lithium ion battery</topic><topic>Materials science</topic><topic>Methods of crystal growth; physics of crystal growth</topic><topic>Methods of nanofabrication</topic><topic>Ni segregation</topic><topic>Physics</topic><topic>Specific phase transitions</topic><topic>Spinel formation</topic><topic>Structural transitions in nanoscale materials</topic><topic>Voltage fade</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Jianming</creatorcontrib><creatorcontrib>Gu, Meng</creatorcontrib><creatorcontrib>Genc, Arda</creatorcontrib><creatorcontrib>Xiao, Jie</creatorcontrib><creatorcontrib>Xu, Pinghong</creatorcontrib><creatorcontrib>Chen, Xilin</creatorcontrib><creatorcontrib>Zhu, Zihua</creatorcontrib><creatorcontrib>Zhao, Wenbo</creatorcontrib><creatorcontrib>Pullan, Lee</creatorcontrib><creatorcontrib>Wang, Chongmin</creatorcontrib><creatorcontrib>Zhang, Ji-Guang</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Nano Letters, 14(5):2628-2635</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Jianming</au><au>Gu, Meng</au><au>Genc, Arda</au><au>Xiao, Jie</au><au>Xu, Pinghong</au><au>Chen, Xilin</au><au>Zhu, Zihua</au><au>Zhao, Wenbo</au><au>Pullan, Lee</au><au>Wang, Chongmin</au><au>Zhang, Ji-Guang</au><aucorp>Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mitigating Voltage Fade in Cathode Materials by Improving the Atomic Level Uniformity of Elemental Distribution</atitle><jtitle>Nano Letters, 14(5):2628-2635</jtitle><addtitle>Nano Lett</addtitle><date>2014-05-14</date><risdate>2014</risdate><volume>14</volume><issue>5</issue><spage>2628</spage><epage>2635</epage><pages>2628-2635</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Lithium- and manganese-rich (LMR) layered-structure materials are very promising cathodes for high energy density lithium-ion batteries. However, their voltage fading mechanism and its relationships with fundamental structural changes are far from being well understood. Here we report for the first time the mitigation of voltage and energy fade of LMR cathodes by improving the atomic level spatial uniformity of the chemical species. The results reveal that LMR cathodes (Li[Li0.2Ni0.2M0.6]O2) prepared by coprecipitation and sol–gel methods, which are dominated by a LiMO2 type R3̅m structure, show significant nonuniform Ni distribution at particle surfaces. In contrast, the LMR cathode prepared by a hydrothermal assisted method is dominated by a Li2MO3 type C2/m structure with minimal Ni-rich surfaces. The samples with uniform atomic level spatial distribution demonstrate much better capacity retention and much smaller voltage fade as compared to those with significant nonuniform Ni distribution. The fundamental findings on the direct correlation between the atomic level spatial distribution of the chemical species and the functional stability of the materials may also guide the design of other energy storage materials with enhanced stabilities.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>24707978</pmid><doi>10.1021/nl500486y</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano Letters, 14(5):2628-2635, 2014-05, Vol.14 (5), p.2628-2635
issn 1530-6984
1530-6992
language eng
recordid cdi_proquest_miscellaneous_1524818240
source ACS Publications
subjects Applied sciences
Cation mixing
Chemical synthesis methods
Condensed matter: structure, mechanical and thermal properties
Cross-disciplinary physics: materials science
rheology
Direct energy conversion and energy accumulation
Electrical engineering. Electrical power engineering
Electrical power engineering
Electrochemical conversion: primary and secondary batteries, fuel cells
Environmental Molecular Sciences Laboratory
Equations of state, phase equilibria, and phase transitions
Exact sciences and technology
Growth from solutions
Layered structure
Lithium ion battery
Materials science
Methods of crystal growth
physics of crystal growth
Methods of nanofabrication
Ni segregation
Physics
Specific phase transitions
Spinel formation
Structural transitions in nanoscale materials
Voltage fade
title Mitigating Voltage Fade in Cathode Materials by Improving the Atomic Level Uniformity of Elemental Distribution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T12%3A47%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mitigating%20Voltage%20Fade%20in%20Cathode%20Materials%20by%20Improving%20the%20Atomic%20Level%20Uniformity%20of%20Elemental%20Distribution&rft.jtitle=Nano%20Letters,%2014(5):2628-2635&rft.au=Zheng,%20Jianming&rft.aucorp=Pacific%20Northwest%20National%20Laboratory%20(PNNL),%20Richland,%20WA%20(US),%20Environmental%20Molecular%20Sciences%20Laboratory%20(EMSL)&rft.date=2014-05-14&rft.volume=14&rft.issue=5&rft.spage=2628&rft.epage=2635&rft.pages=2628-2635&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/nl500486y&rft_dat=%3Cproquest_osti_%3E1524818240%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1524818240&rft_id=info:pmid/24707978&rfr_iscdi=true