Understanding the Mechanical Properties of DNA Origami Tiles and Controlling the Kinetics of Their Folding and Unfolding Reconfiguration
DNA origami represents a class of highly programmable macromolecules that can go through conformational changes in response to external signals. Here we show that a two-dimensional origami rectangle can be effectively folded into a short, cylindrical tube by connecting the two opposite edges through...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2014-05, Vol.136 (19), p.6995-7005 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7005 |
---|---|
container_issue | 19 |
container_start_page | 6995 |
container_title | Journal of the American Chemical Society |
container_volume | 136 |
creator | Chen, Haorong Weng, Te-Wei Riccitelli, Molly M Cui, Yi Irudayaraj, Joseph Choi, Jong Hyun |
description | DNA origami represents a class of highly programmable macromolecules that can go through conformational changes in response to external signals. Here we show that a two-dimensional origami rectangle can be effectively folded into a short, cylindrical tube by connecting the two opposite edges through the hybridization of linker strands and that this process can be efficiently reversed via toehold-mediated strand displacement. The reconfiguration kinetics was experimentally studied as a function of incubation temperature, initial origami concentration, missing staples, and origami geometry. A kinetic model was developed by introducing the j factor to describe the reaction rates in the cyclization process. We found that the cyclization efficiency (j factor) increases sharply with temperature and depends strongly on the structural flexibility and geometry. A simple mechanical model was used to correlate the observed cyclization efficiency with origami structure details. The mechanical analysis suggests two sources of the energy barrier for DNA origami folding: overcoming global twisting and bending the structure into a circular conformation. It also provides the first semiquantitative estimation of the rigidity of DNA interhelix crossovers, an essential element in structural DNA nanotechnology. This work demonstrates efficient DNA origami reconfiguration, advances our understanding of the dynamics and mechanical properties of self-assembled DNA structures, and should be valuable to the field of DNA nanotechnology. |
doi_str_mv | 10.1021/ja500612d |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1524816893</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1524816893</sourcerecordid><originalsourceid>FETCH-LOGICAL-a315t-e008c99da3cc9c0b22fa10241a8d36eee5f61e4fb0413defc2d8f6864a928a303</originalsourceid><addsrcrecordid>eNptkMtOwzAQRS0EoqWw4AeQN0iwCPiV1FlW5SmeQu06cp1x6yq1i50s-AM-G0MLK1ajGZ17pTkIHVNyQQmjl0uVE1JQVu-gPs0ZyXLKil3UJ4SwbCgL3kMHMS7TKpik-6jHxFCUORd99Dl1NYTYKldbN8ftAvAT6IVyVqsGvwa_htBaiNgbfPU8wi_BztXK4olt0jGl8Ni7Nvim-Y0_WAet1T-JyQJswDe--Sn_pqfObLc30N4ZO--Caq13h2jPqCbC0XYO0PTmejK-yx5fbu_Ho8dMcZq3GRAidVnWimtdajJjzKjkQFAla14AQG4KCsLMiKC8BqNZLU0hC6FKJhUnfIDONr3r4N87iG21slFD0ygHvotV8ickLWTJE3q-QXXwMQYw1TrYlQofFSXVt_jqT3xiT7a13WwF9R_5azoBpxtA6VgtfRdc-vKfoi9Inotz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1524816893</pqid></control><display><type>article</type><title>Understanding the Mechanical Properties of DNA Origami Tiles and Controlling the Kinetics of Their Folding and Unfolding Reconfiguration</title><source>ACS Publications</source><source>MEDLINE</source><creator>Chen, Haorong ; Weng, Te-Wei ; Riccitelli, Molly M ; Cui, Yi ; Irudayaraj, Joseph ; Choi, Jong Hyun</creator><creatorcontrib>Chen, Haorong ; Weng, Te-Wei ; Riccitelli, Molly M ; Cui, Yi ; Irudayaraj, Joseph ; Choi, Jong Hyun</creatorcontrib><description>DNA origami represents a class of highly programmable macromolecules that can go through conformational changes in response to external signals. Here we show that a two-dimensional origami rectangle can be effectively folded into a short, cylindrical tube by connecting the two opposite edges through the hybridization of linker strands and that this process can be efficiently reversed via toehold-mediated strand displacement. The reconfiguration kinetics was experimentally studied as a function of incubation temperature, initial origami concentration, missing staples, and origami geometry. A kinetic model was developed by introducing the j factor to describe the reaction rates in the cyclization process. We found that the cyclization efficiency (j factor) increases sharply with temperature and depends strongly on the structural flexibility and geometry. A simple mechanical model was used to correlate the observed cyclization efficiency with origami structure details. The mechanical analysis suggests two sources of the energy barrier for DNA origami folding: overcoming global twisting and bending the structure into a circular conformation. It also provides the first semiquantitative estimation of the rigidity of DNA interhelix crossovers, an essential element in structural DNA nanotechnology. This work demonstrates efficient DNA origami reconfiguration, advances our understanding of the dynamics and mechanical properties of self-assembled DNA structures, and should be valuable to the field of DNA nanotechnology.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/ja500612d</identifier><identifier>PMID: 24749534</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>DNA - chemistry ; Elasticity ; Kinetics ; Nanostructures - chemistry ; Nanostructures - ultrastructure ; Nanotechnology ; Nucleic Acid Conformation</subject><ispartof>Journal of the American Chemical Society, 2014-05, Vol.136 (19), p.6995-7005</ispartof><rights>Copyright © 2014 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a315t-e008c99da3cc9c0b22fa10241a8d36eee5f61e4fb0413defc2d8f6864a928a303</citedby><cites>FETCH-LOGICAL-a315t-e008c99da3cc9c0b22fa10241a8d36eee5f61e4fb0413defc2d8f6864a928a303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ja500612d$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ja500612d$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24749534$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Haorong</creatorcontrib><creatorcontrib>Weng, Te-Wei</creatorcontrib><creatorcontrib>Riccitelli, Molly M</creatorcontrib><creatorcontrib>Cui, Yi</creatorcontrib><creatorcontrib>Irudayaraj, Joseph</creatorcontrib><creatorcontrib>Choi, Jong Hyun</creatorcontrib><title>Understanding the Mechanical Properties of DNA Origami Tiles and Controlling the Kinetics of Their Folding and Unfolding Reconfiguration</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>DNA origami represents a class of highly programmable macromolecules that can go through conformational changes in response to external signals. Here we show that a two-dimensional origami rectangle can be effectively folded into a short, cylindrical tube by connecting the two opposite edges through the hybridization of linker strands and that this process can be efficiently reversed via toehold-mediated strand displacement. The reconfiguration kinetics was experimentally studied as a function of incubation temperature, initial origami concentration, missing staples, and origami geometry. A kinetic model was developed by introducing the j factor to describe the reaction rates in the cyclization process. We found that the cyclization efficiency (j factor) increases sharply with temperature and depends strongly on the structural flexibility and geometry. A simple mechanical model was used to correlate the observed cyclization efficiency with origami structure details. The mechanical analysis suggests two sources of the energy barrier for DNA origami folding: overcoming global twisting and bending the structure into a circular conformation. It also provides the first semiquantitative estimation of the rigidity of DNA interhelix crossovers, an essential element in structural DNA nanotechnology. This work demonstrates efficient DNA origami reconfiguration, advances our understanding of the dynamics and mechanical properties of self-assembled DNA structures, and should be valuable to the field of DNA nanotechnology.</description><subject>DNA - chemistry</subject><subject>Elasticity</subject><subject>Kinetics</subject><subject>Nanostructures - chemistry</subject><subject>Nanostructures - ultrastructure</subject><subject>Nanotechnology</subject><subject>Nucleic Acid Conformation</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkMtOwzAQRS0EoqWw4AeQN0iwCPiV1FlW5SmeQu06cp1x6yq1i50s-AM-G0MLK1ajGZ17pTkIHVNyQQmjl0uVE1JQVu-gPs0ZyXLKil3UJ4SwbCgL3kMHMS7TKpik-6jHxFCUORd99Dl1NYTYKldbN8ftAvAT6IVyVqsGvwa_htBaiNgbfPU8wi_BztXK4olt0jGl8Ni7Nvim-Y0_WAet1T-JyQJswDe--Sn_pqfObLc30N4ZO--Caq13h2jPqCbC0XYO0PTmejK-yx5fbu_Ho8dMcZq3GRAidVnWimtdajJjzKjkQFAla14AQG4KCsLMiKC8BqNZLU0hC6FKJhUnfIDONr3r4N87iG21slFD0ygHvotV8ickLWTJE3q-QXXwMQYw1TrYlQofFSXVt_jqT3xiT7a13WwF9R_5azoBpxtA6VgtfRdc-vKfoi9Inotz</recordid><startdate>20140514</startdate><enddate>20140514</enddate><creator>Chen, Haorong</creator><creator>Weng, Te-Wei</creator><creator>Riccitelli, Molly M</creator><creator>Cui, Yi</creator><creator>Irudayaraj, Joseph</creator><creator>Choi, Jong Hyun</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20140514</creationdate><title>Understanding the Mechanical Properties of DNA Origami Tiles and Controlling the Kinetics of Their Folding and Unfolding Reconfiguration</title><author>Chen, Haorong ; Weng, Te-Wei ; Riccitelli, Molly M ; Cui, Yi ; Irudayaraj, Joseph ; Choi, Jong Hyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a315t-e008c99da3cc9c0b22fa10241a8d36eee5f61e4fb0413defc2d8f6864a928a303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>DNA - chemistry</topic><topic>Elasticity</topic><topic>Kinetics</topic><topic>Nanostructures - chemistry</topic><topic>Nanostructures - ultrastructure</topic><topic>Nanotechnology</topic><topic>Nucleic Acid Conformation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Haorong</creatorcontrib><creatorcontrib>Weng, Te-Wei</creatorcontrib><creatorcontrib>Riccitelli, Molly M</creatorcontrib><creatorcontrib>Cui, Yi</creatorcontrib><creatorcontrib>Irudayaraj, Joseph</creatorcontrib><creatorcontrib>Choi, Jong Hyun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Haorong</au><au>Weng, Te-Wei</au><au>Riccitelli, Molly M</au><au>Cui, Yi</au><au>Irudayaraj, Joseph</au><au>Choi, Jong Hyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Understanding the Mechanical Properties of DNA Origami Tiles and Controlling the Kinetics of Their Folding and Unfolding Reconfiguration</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2014-05-14</date><risdate>2014</risdate><volume>136</volume><issue>19</issue><spage>6995</spage><epage>7005</epage><pages>6995-7005</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>DNA origami represents a class of highly programmable macromolecules that can go through conformational changes in response to external signals. Here we show that a two-dimensional origami rectangle can be effectively folded into a short, cylindrical tube by connecting the two opposite edges through the hybridization of linker strands and that this process can be efficiently reversed via toehold-mediated strand displacement. The reconfiguration kinetics was experimentally studied as a function of incubation temperature, initial origami concentration, missing staples, and origami geometry. A kinetic model was developed by introducing the j factor to describe the reaction rates in the cyclization process. We found that the cyclization efficiency (j factor) increases sharply with temperature and depends strongly on the structural flexibility and geometry. A simple mechanical model was used to correlate the observed cyclization efficiency with origami structure details. The mechanical analysis suggests two sources of the energy barrier for DNA origami folding: overcoming global twisting and bending the structure into a circular conformation. It also provides the first semiquantitative estimation of the rigidity of DNA interhelix crossovers, an essential element in structural DNA nanotechnology. This work demonstrates efficient DNA origami reconfiguration, advances our understanding of the dynamics and mechanical properties of self-assembled DNA structures, and should be valuable to the field of DNA nanotechnology.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>24749534</pmid><doi>10.1021/ja500612d</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7863 |
ispartof | Journal of the American Chemical Society, 2014-05, Vol.136 (19), p.6995-7005 |
issn | 0002-7863 1520-5126 |
language | eng |
recordid | cdi_proquest_miscellaneous_1524816893 |
source | ACS Publications; MEDLINE |
subjects | DNA - chemistry Elasticity Kinetics Nanostructures - chemistry Nanostructures - ultrastructure Nanotechnology Nucleic Acid Conformation |
title | Understanding the Mechanical Properties of DNA Origami Tiles and Controlling the Kinetics of Their Folding and Unfolding Reconfiguration |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T20%3A00%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Understanding%20the%20Mechanical%20Properties%20of%20DNA%20Origami%20Tiles%20and%20Controlling%20the%20Kinetics%20of%20Their%20Folding%20and%20Unfolding%20Reconfiguration&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Chen,%20Haorong&rft.date=2014-05-14&rft.volume=136&rft.issue=19&rft.spage=6995&rft.epage=7005&rft.pages=6995-7005&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/ja500612d&rft_dat=%3Cproquest_cross%3E1524816893%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1524816893&rft_id=info:pmid/24749534&rfr_iscdi=true |