Understanding the Mechanical Properties of DNA Origami Tiles and Controlling the Kinetics of Their Folding and Unfolding Reconfiguration

DNA origami represents a class of highly programmable macromolecules that can go through conformational changes in response to external signals. Here we show that a two-dimensional origami rectangle can be effectively folded into a short, cylindrical tube by connecting the two opposite edges through...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2014-05, Vol.136 (19), p.6995-7005
Hauptverfasser: Chen, Haorong, Weng, Te-Wei, Riccitelli, Molly M, Cui, Yi, Irudayaraj, Joseph, Choi, Jong Hyun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7005
container_issue 19
container_start_page 6995
container_title Journal of the American Chemical Society
container_volume 136
creator Chen, Haorong
Weng, Te-Wei
Riccitelli, Molly M
Cui, Yi
Irudayaraj, Joseph
Choi, Jong Hyun
description DNA origami represents a class of highly programmable macromolecules that can go through conformational changes in response to external signals. Here we show that a two-dimensional origami rectangle can be effectively folded into a short, cylindrical tube by connecting the two opposite edges through the hybridization of linker strands and that this process can be efficiently reversed via toehold-mediated strand displacement. The reconfiguration kinetics was experimentally studied as a function of incubation temperature, initial origami concentration, missing staples, and origami geometry. A kinetic model was developed by introducing the j factor to describe the reaction rates in the cyclization process. We found that the cyclization efficiency (j factor) increases sharply with temperature and depends strongly on the structural flexibility and geometry. A simple mechanical model was used to correlate the observed cyclization efficiency with origami structure details. The mechanical analysis suggests two sources of the energy barrier for DNA origami folding: overcoming global twisting and bending the structure into a circular conformation. It also provides the first semiquantitative estimation of the rigidity of DNA interhelix crossovers, an essential element in structural DNA nanotechnology. This work demonstrates efficient DNA origami reconfiguration, advances our understanding of the dynamics and mechanical properties of self-assembled DNA structures, and should be valuable to the field of DNA nanotechnology.
doi_str_mv 10.1021/ja500612d
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1524816893</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1524816893</sourcerecordid><originalsourceid>FETCH-LOGICAL-a315t-e008c99da3cc9c0b22fa10241a8d36eee5f61e4fb0413defc2d8f6864a928a303</originalsourceid><addsrcrecordid>eNptkMtOwzAQRS0EoqWw4AeQN0iwCPiV1FlW5SmeQu06cp1x6yq1i50s-AM-G0MLK1ajGZ17pTkIHVNyQQmjl0uVE1JQVu-gPs0ZyXLKil3UJ4SwbCgL3kMHMS7TKpik-6jHxFCUORd99Dl1NYTYKldbN8ftAvAT6IVyVqsGvwa_htBaiNgbfPU8wi_BztXK4olt0jGl8Ni7Nvim-Y0_WAet1T-JyQJswDe--Sn_pqfObLc30N4ZO--Caq13h2jPqCbC0XYO0PTmejK-yx5fbu_Ho8dMcZq3GRAidVnWimtdajJjzKjkQFAla14AQG4KCsLMiKC8BqNZLU0hC6FKJhUnfIDONr3r4N87iG21slFD0ygHvotV8ickLWTJE3q-QXXwMQYw1TrYlQofFSXVt_jqT3xiT7a13WwF9R_5azoBpxtA6VgtfRdc-vKfoi9Inotz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1524816893</pqid></control><display><type>article</type><title>Understanding the Mechanical Properties of DNA Origami Tiles and Controlling the Kinetics of Their Folding and Unfolding Reconfiguration</title><source>ACS Publications</source><source>MEDLINE</source><creator>Chen, Haorong ; Weng, Te-Wei ; Riccitelli, Molly M ; Cui, Yi ; Irudayaraj, Joseph ; Choi, Jong Hyun</creator><creatorcontrib>Chen, Haorong ; Weng, Te-Wei ; Riccitelli, Molly M ; Cui, Yi ; Irudayaraj, Joseph ; Choi, Jong Hyun</creatorcontrib><description>DNA origami represents a class of highly programmable macromolecules that can go through conformational changes in response to external signals. Here we show that a two-dimensional origami rectangle can be effectively folded into a short, cylindrical tube by connecting the two opposite edges through the hybridization of linker strands and that this process can be efficiently reversed via toehold-mediated strand displacement. The reconfiguration kinetics was experimentally studied as a function of incubation temperature, initial origami concentration, missing staples, and origami geometry. A kinetic model was developed by introducing the j factor to describe the reaction rates in the cyclization process. We found that the cyclization efficiency (j factor) increases sharply with temperature and depends strongly on the structural flexibility and geometry. A simple mechanical model was used to correlate the observed cyclization efficiency with origami structure details. The mechanical analysis suggests two sources of the energy barrier for DNA origami folding: overcoming global twisting and bending the structure into a circular conformation. It also provides the first semiquantitative estimation of the rigidity of DNA interhelix crossovers, an essential element in structural DNA nanotechnology. This work demonstrates efficient DNA origami reconfiguration, advances our understanding of the dynamics and mechanical properties of self-assembled DNA structures, and should be valuable to the field of DNA nanotechnology.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/ja500612d</identifier><identifier>PMID: 24749534</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>DNA - chemistry ; Elasticity ; Kinetics ; Nanostructures - chemistry ; Nanostructures - ultrastructure ; Nanotechnology ; Nucleic Acid Conformation</subject><ispartof>Journal of the American Chemical Society, 2014-05, Vol.136 (19), p.6995-7005</ispartof><rights>Copyright © 2014 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a315t-e008c99da3cc9c0b22fa10241a8d36eee5f61e4fb0413defc2d8f6864a928a303</citedby><cites>FETCH-LOGICAL-a315t-e008c99da3cc9c0b22fa10241a8d36eee5f61e4fb0413defc2d8f6864a928a303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ja500612d$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ja500612d$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24749534$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Haorong</creatorcontrib><creatorcontrib>Weng, Te-Wei</creatorcontrib><creatorcontrib>Riccitelli, Molly M</creatorcontrib><creatorcontrib>Cui, Yi</creatorcontrib><creatorcontrib>Irudayaraj, Joseph</creatorcontrib><creatorcontrib>Choi, Jong Hyun</creatorcontrib><title>Understanding the Mechanical Properties of DNA Origami Tiles and Controlling the Kinetics of Their Folding and Unfolding Reconfiguration</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>DNA origami represents a class of highly programmable macromolecules that can go through conformational changes in response to external signals. Here we show that a two-dimensional origami rectangle can be effectively folded into a short, cylindrical tube by connecting the two opposite edges through the hybridization of linker strands and that this process can be efficiently reversed via toehold-mediated strand displacement. The reconfiguration kinetics was experimentally studied as a function of incubation temperature, initial origami concentration, missing staples, and origami geometry. A kinetic model was developed by introducing the j factor to describe the reaction rates in the cyclization process. We found that the cyclization efficiency (j factor) increases sharply with temperature and depends strongly on the structural flexibility and geometry. A simple mechanical model was used to correlate the observed cyclization efficiency with origami structure details. The mechanical analysis suggests two sources of the energy barrier for DNA origami folding: overcoming global twisting and bending the structure into a circular conformation. It also provides the first semiquantitative estimation of the rigidity of DNA interhelix crossovers, an essential element in structural DNA nanotechnology. This work demonstrates efficient DNA origami reconfiguration, advances our understanding of the dynamics and mechanical properties of self-assembled DNA structures, and should be valuable to the field of DNA nanotechnology.</description><subject>DNA - chemistry</subject><subject>Elasticity</subject><subject>Kinetics</subject><subject>Nanostructures - chemistry</subject><subject>Nanostructures - ultrastructure</subject><subject>Nanotechnology</subject><subject>Nucleic Acid Conformation</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkMtOwzAQRS0EoqWw4AeQN0iwCPiV1FlW5SmeQu06cp1x6yq1i50s-AM-G0MLK1ajGZ17pTkIHVNyQQmjl0uVE1JQVu-gPs0ZyXLKil3UJ4SwbCgL3kMHMS7TKpik-6jHxFCUORd99Dl1NYTYKldbN8ftAvAT6IVyVqsGvwa_htBaiNgbfPU8wi_BztXK4olt0jGl8Ni7Nvim-Y0_WAet1T-JyQJswDe--Sn_pqfObLc30N4ZO--Caq13h2jPqCbC0XYO0PTmejK-yx5fbu_Ho8dMcZq3GRAidVnWimtdajJjzKjkQFAla14AQG4KCsLMiKC8BqNZLU0hC6FKJhUnfIDONr3r4N87iG21slFD0ygHvotV8ickLWTJE3q-QXXwMQYw1TrYlQofFSXVt_jqT3xiT7a13WwF9R_5azoBpxtA6VgtfRdc-vKfoi9Inotz</recordid><startdate>20140514</startdate><enddate>20140514</enddate><creator>Chen, Haorong</creator><creator>Weng, Te-Wei</creator><creator>Riccitelli, Molly M</creator><creator>Cui, Yi</creator><creator>Irudayaraj, Joseph</creator><creator>Choi, Jong Hyun</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20140514</creationdate><title>Understanding the Mechanical Properties of DNA Origami Tiles and Controlling the Kinetics of Their Folding and Unfolding Reconfiguration</title><author>Chen, Haorong ; Weng, Te-Wei ; Riccitelli, Molly M ; Cui, Yi ; Irudayaraj, Joseph ; Choi, Jong Hyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a315t-e008c99da3cc9c0b22fa10241a8d36eee5f61e4fb0413defc2d8f6864a928a303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>DNA - chemistry</topic><topic>Elasticity</topic><topic>Kinetics</topic><topic>Nanostructures - chemistry</topic><topic>Nanostructures - ultrastructure</topic><topic>Nanotechnology</topic><topic>Nucleic Acid Conformation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Haorong</creatorcontrib><creatorcontrib>Weng, Te-Wei</creatorcontrib><creatorcontrib>Riccitelli, Molly M</creatorcontrib><creatorcontrib>Cui, Yi</creatorcontrib><creatorcontrib>Irudayaraj, Joseph</creatorcontrib><creatorcontrib>Choi, Jong Hyun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Haorong</au><au>Weng, Te-Wei</au><au>Riccitelli, Molly M</au><au>Cui, Yi</au><au>Irudayaraj, Joseph</au><au>Choi, Jong Hyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Understanding the Mechanical Properties of DNA Origami Tiles and Controlling the Kinetics of Their Folding and Unfolding Reconfiguration</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2014-05-14</date><risdate>2014</risdate><volume>136</volume><issue>19</issue><spage>6995</spage><epage>7005</epage><pages>6995-7005</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>DNA origami represents a class of highly programmable macromolecules that can go through conformational changes in response to external signals. Here we show that a two-dimensional origami rectangle can be effectively folded into a short, cylindrical tube by connecting the two opposite edges through the hybridization of linker strands and that this process can be efficiently reversed via toehold-mediated strand displacement. The reconfiguration kinetics was experimentally studied as a function of incubation temperature, initial origami concentration, missing staples, and origami geometry. A kinetic model was developed by introducing the j factor to describe the reaction rates in the cyclization process. We found that the cyclization efficiency (j factor) increases sharply with temperature and depends strongly on the structural flexibility and geometry. A simple mechanical model was used to correlate the observed cyclization efficiency with origami structure details. The mechanical analysis suggests two sources of the energy barrier for DNA origami folding: overcoming global twisting and bending the structure into a circular conformation. It also provides the first semiquantitative estimation of the rigidity of DNA interhelix crossovers, an essential element in structural DNA nanotechnology. This work demonstrates efficient DNA origami reconfiguration, advances our understanding of the dynamics and mechanical properties of self-assembled DNA structures, and should be valuable to the field of DNA nanotechnology.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>24749534</pmid><doi>10.1021/ja500612d</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2014-05, Vol.136 (19), p.6995-7005
issn 0002-7863
1520-5126
language eng
recordid cdi_proquest_miscellaneous_1524816893
source ACS Publications; MEDLINE
subjects DNA - chemistry
Elasticity
Kinetics
Nanostructures - chemistry
Nanostructures - ultrastructure
Nanotechnology
Nucleic Acid Conformation
title Understanding the Mechanical Properties of DNA Origami Tiles and Controlling the Kinetics of Their Folding and Unfolding Reconfiguration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T20%3A00%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Understanding%20the%20Mechanical%20Properties%20of%20DNA%20Origami%20Tiles%20and%20Controlling%20the%20Kinetics%20of%20Their%20Folding%20and%20Unfolding%20Reconfiguration&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Chen,%20Haorong&rft.date=2014-05-14&rft.volume=136&rft.issue=19&rft.spage=6995&rft.epage=7005&rft.pages=6995-7005&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/ja500612d&rft_dat=%3Cproquest_cross%3E1524816893%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1524816893&rft_id=info:pmid/24749534&rfr_iscdi=true