Cognitive Engineering of Automated Assembly Processes

A cognitive control unit (CCU) for automated assembly systems aims to simulate human information processing at a rule‐based level of cognitive control. Focusing on the subtask of monitoring, a cognitive engineering approach for the design of the procedural knowledge base of the CCU is presented and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Human factors and ergonomics in manufacturing & service industries 2014-05, Vol.24 (3), p.348-368
Hauptverfasser: Mayer, Marcel Ph, Odenthal, Barbara, Faber, Marco, Winkelholz, Carsten, Schlick, Christopher M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 368
container_issue 3
container_start_page 348
container_title Human factors and ergonomics in manufacturing & service industries
container_volume 24
creator Mayer, Marcel Ph
Odenthal, Barbara
Faber, Marco
Winkelholz, Carsten
Schlick, Christopher M.
description A cognitive control unit (CCU) for automated assembly systems aims to simulate human information processing at a rule‐based level of cognitive control. Focusing on the subtask of monitoring, a cognitive engineering approach for the design of the procedural knowledge base of the CCU is presented and a human‐centered simulation model of assembly processes on the basis of the cognitive architecture SOAR is introduced. The overall objective is to design and develop the system to conform to operators' expectations. To identify human assembly strategies to be included in the CCU, an empirical study with n = 16 participants was conducted and validated by an independent investigation with n = 25 persons. Furthermore, simulation models incorporating certain subsets of production rules were developed and evaluated regarding their goodness of prediction of human assembly behavior. The results show that the rule sets have a significant effect on the predictive power. The highest prediction accuracy was obtained with all identified assembly rules integrated. © 2012 Wiley Periodicals, Inc.
doi_str_mv 10.1002/hfm.20390
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1524433748</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1524433748</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3680-6f0070579f9f5ccc094c751b9efdc0ac01163b5726996d7183f795337765e9f13</originalsourceid><addsrcrecordid>eNp10LtOwzAUBuAIgUQpDLxBJBYY0h7Ht3isKtIilcsA6milrl1ccil2AvTtcSkwIDHZlr7fPv6j6BzBAAGkw2dTDVLAAg6iHqIpJIwychj2ICDJCEfH0Yn3awDACPFeRMfNqratfdPxdb2ytdbO1qu4MfGoa5uqaPUyHnmvq0W5jR9co3Q4-NPoyBSl12ffaz96yq8fx9Nkdj-5GY9micIsC28bAA6UCyMMVUqBIIpTtBDaLBUUChBieEF5yoRgS44ybLigGHPOqBYG4X50ub9345rXTvtWVtYrXZZFrZvOy_BDQoInWaAXf-i66Vwdptsp4ALjjAR1tVfKNd47beTG2apwW4lA7gqUoUD5VWCww719t6Xe_g_lNL_9SST7hPWt_vhNFO5FMo45lfO7icxEDnNCqczxJ-XAfd4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1520793384</pqid></control><display><type>article</type><title>Cognitive Engineering of Automated Assembly Processes</title><source>Wiley Online Library All Journals</source><creator>Mayer, Marcel Ph ; Odenthal, Barbara ; Faber, Marco ; Winkelholz, Carsten ; Schlick, Christopher M.</creator><creatorcontrib>Mayer, Marcel Ph ; Odenthal, Barbara ; Faber, Marco ; Winkelholz, Carsten ; Schlick, Christopher M.</creatorcontrib><description>A cognitive control unit (CCU) for automated assembly systems aims to simulate human information processing at a rule‐based level of cognitive control. Focusing on the subtask of monitoring, a cognitive engineering approach for the design of the procedural knowledge base of the CCU is presented and a human‐centered simulation model of assembly processes on the basis of the cognitive architecture SOAR is introduced. The overall objective is to design and develop the system to conform to operators' expectations. To identify human assembly strategies to be included in the CCU, an empirical study with n = 16 participants was conducted and validated by an independent investigation with n = 25 persons. Furthermore, simulation models incorporating certain subsets of production rules were developed and evaluated regarding their goodness of prediction of human assembly behavior. The results show that the rule sets have a significant effect on the predictive power. The highest prediction accuracy was obtained with all identified assembly rules integrated. © 2012 Wiley Periodicals, Inc.</description><identifier>ISSN: 1090-8471</identifier><identifier>EISSN: 1520-6564</identifier><identifier>DOI: 10.1002/hfm.20390</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Assembly ; Behavior ; Cognition &amp; reasoning ; Cognitive automation ; Human factors research ; Information processing ; Joint cognitive systems ; MTM ; Simulation ; Supervisory control</subject><ispartof>Human factors and ergonomics in manufacturing &amp; service industries, 2014-05, Vol.24 (3), p.348-368</ispartof><rights>Copyright © 2012 Wiley Periodicals, Inc., A Wiley Company</rights><rights>Copyright Wiley Subscription Services, Inc. May/Jun 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3680-6f0070579f9f5ccc094c751b9efdc0ac01163b5726996d7183f795337765e9f13</citedby><cites>FETCH-LOGICAL-c3680-6f0070579f9f5ccc094c751b9efdc0ac01163b5726996d7183f795337765e9f13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fhfm.20390$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fhfm.20390$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27922,27923,45572,45573</link.rule.ids></links><search><creatorcontrib>Mayer, Marcel Ph</creatorcontrib><creatorcontrib>Odenthal, Barbara</creatorcontrib><creatorcontrib>Faber, Marco</creatorcontrib><creatorcontrib>Winkelholz, Carsten</creatorcontrib><creatorcontrib>Schlick, Christopher M.</creatorcontrib><title>Cognitive Engineering of Automated Assembly Processes</title><title>Human factors and ergonomics in manufacturing &amp; service industries</title><addtitle>Hum. Factors Man</addtitle><description>A cognitive control unit (CCU) for automated assembly systems aims to simulate human information processing at a rule‐based level of cognitive control. Focusing on the subtask of monitoring, a cognitive engineering approach for the design of the procedural knowledge base of the CCU is presented and a human‐centered simulation model of assembly processes on the basis of the cognitive architecture SOAR is introduced. The overall objective is to design and develop the system to conform to operators' expectations. To identify human assembly strategies to be included in the CCU, an empirical study with n = 16 participants was conducted and validated by an independent investigation with n = 25 persons. Furthermore, simulation models incorporating certain subsets of production rules were developed and evaluated regarding their goodness of prediction of human assembly behavior. The results show that the rule sets have a significant effect on the predictive power. The highest prediction accuracy was obtained with all identified assembly rules integrated. © 2012 Wiley Periodicals, Inc.</description><subject>Assembly</subject><subject>Behavior</subject><subject>Cognition &amp; reasoning</subject><subject>Cognitive automation</subject><subject>Human factors research</subject><subject>Information processing</subject><subject>Joint cognitive systems</subject><subject>MTM</subject><subject>Simulation</subject><subject>Supervisory control</subject><issn>1090-8471</issn><issn>1520-6564</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp10LtOwzAUBuAIgUQpDLxBJBYY0h7Ht3isKtIilcsA6milrl1ccil2AvTtcSkwIDHZlr7fPv6j6BzBAAGkw2dTDVLAAg6iHqIpJIwychj2ICDJCEfH0Yn3awDACPFeRMfNqratfdPxdb2ytdbO1qu4MfGoa5uqaPUyHnmvq0W5jR9co3Q4-NPoyBSl12ffaz96yq8fx9Nkdj-5GY9micIsC28bAA6UCyMMVUqBIIpTtBDaLBUUChBieEF5yoRgS44ybLigGHPOqBYG4X50ub9345rXTvtWVtYrXZZFrZvOy_BDQoInWaAXf-i66Vwdptsp4ALjjAR1tVfKNd47beTG2apwW4lA7gqUoUD5VWCww719t6Xe_g_lNL_9SST7hPWt_vhNFO5FMo45lfO7icxEDnNCqczxJ-XAfd4</recordid><startdate>201405</startdate><enddate>201405</enddate><creator>Mayer, Marcel Ph</creator><creator>Odenthal, Barbara</creator><creator>Faber, Marco</creator><creator>Winkelholz, Carsten</creator><creator>Schlick, Christopher M.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T2</scope><scope>C1K</scope><scope>7U2</scope></search><sort><creationdate>201405</creationdate><title>Cognitive Engineering of Automated Assembly Processes</title><author>Mayer, Marcel Ph ; Odenthal, Barbara ; Faber, Marco ; Winkelholz, Carsten ; Schlick, Christopher M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3680-6f0070579f9f5ccc094c751b9efdc0ac01163b5726996d7183f795337765e9f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Assembly</topic><topic>Behavior</topic><topic>Cognition &amp; reasoning</topic><topic>Cognitive automation</topic><topic>Human factors research</topic><topic>Information processing</topic><topic>Joint cognitive systems</topic><topic>MTM</topic><topic>Simulation</topic><topic>Supervisory control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mayer, Marcel Ph</creatorcontrib><creatorcontrib>Odenthal, Barbara</creatorcontrib><creatorcontrib>Faber, Marco</creatorcontrib><creatorcontrib>Winkelholz, Carsten</creatorcontrib><creatorcontrib>Schlick, Christopher M.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Safety Science and Risk</collection><jtitle>Human factors and ergonomics in manufacturing &amp; service industries</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mayer, Marcel Ph</au><au>Odenthal, Barbara</au><au>Faber, Marco</au><au>Winkelholz, Carsten</au><au>Schlick, Christopher M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cognitive Engineering of Automated Assembly Processes</atitle><jtitle>Human factors and ergonomics in manufacturing &amp; service industries</jtitle><addtitle>Hum. Factors Man</addtitle><date>2014-05</date><risdate>2014</risdate><volume>24</volume><issue>3</issue><spage>348</spage><epage>368</epage><pages>348-368</pages><issn>1090-8471</issn><eissn>1520-6564</eissn><abstract>A cognitive control unit (CCU) for automated assembly systems aims to simulate human information processing at a rule‐based level of cognitive control. Focusing on the subtask of monitoring, a cognitive engineering approach for the design of the procedural knowledge base of the CCU is presented and a human‐centered simulation model of assembly processes on the basis of the cognitive architecture SOAR is introduced. The overall objective is to design and develop the system to conform to operators' expectations. To identify human assembly strategies to be included in the CCU, an empirical study with n = 16 participants was conducted and validated by an independent investigation with n = 25 persons. Furthermore, simulation models incorporating certain subsets of production rules were developed and evaluated regarding their goodness of prediction of human assembly behavior. The results show that the rule sets have a significant effect on the predictive power. The highest prediction accuracy was obtained with all identified assembly rules integrated. © 2012 Wiley Periodicals, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/hfm.20390</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1090-8471
ispartof Human factors and ergonomics in manufacturing & service industries, 2014-05, Vol.24 (3), p.348-368
issn 1090-8471
1520-6564
language eng
recordid cdi_proquest_miscellaneous_1524433748
source Wiley Online Library All Journals
subjects Assembly
Behavior
Cognition & reasoning
Cognitive automation
Human factors research
Information processing
Joint cognitive systems
MTM
Simulation
Supervisory control
title Cognitive Engineering of Automated Assembly Processes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T21%3A52%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cognitive%20Engineering%20of%20Automated%20Assembly%20Processes&rft.jtitle=Human%20factors%20and%20ergonomics%20in%20manufacturing%20&%20service%20industries&rft.au=Mayer,%20Marcel%20Ph&rft.date=2014-05&rft.volume=24&rft.issue=3&rft.spage=348&rft.epage=368&rft.pages=348-368&rft.issn=1090-8471&rft.eissn=1520-6564&rft_id=info:doi/10.1002/hfm.20390&rft_dat=%3Cproquest_cross%3E1524433748%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1520793384&rft_id=info:pmid/&rfr_iscdi=true