MicroRNA‐34a Inhibits Osteoblast Differentiation and In Vivo Bone Formation of Human Stromal Stem Cells
Osteoblast differentiation and bone formation (osteogenesis) are regulated by transcriptional and post‐transcriptional mechanisms. Recently, microRNAs (miRNAs) were identified as novel key regulators of human stromal (skeletal, mesenchymal) stem cells (hMSC) differentiation. Here, we identified miRN...
Gespeichert in:
Veröffentlicht in: | Stem cells (Dayton, Ohio) Ohio), 2014-04, Vol.32 (4), p.902-912 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 912 |
---|---|
container_issue | 4 |
container_start_page | 902 |
container_title | Stem cells (Dayton, Ohio) |
container_volume | 32 |
creator | Chen, Li HolmstrØm, Kim Qiu, Weimin Ditzel, Nicholas Shi, Kaikai Hokland, Lea Kassem, Moustapha |
description | Osteoblast differentiation and bone formation (osteogenesis) are regulated by transcriptional and post‐transcriptional mechanisms. Recently, microRNAs (miRNAs) were identified as novel key regulators of human stromal (skeletal, mesenchymal) stem cells (hMSC) differentiation. Here, we identified miRNA‐34a (miR‐34a) and its target protein networks as modulator of osteoblastic (OB) differentiation of hMSC. miRNA array profiling and further validation by quantitative RT‐PCR revealed that miR‐34a was upregulated during OB differentiation of hMSC, and in situ hybridization confirmed its OB expression in vivo. Overexpression of miR‐34a inhibited early commitment and late OB differentiation of hMSC in vitro, whereas inhibition of miR‐34a by anti‐miR‐34a enhanced these processes. Target prediction analysis and experimental validation confirmed Jagged1 (JAG1), a ligand for Notch 1, as a bona fide target of miR‐34a. siRNA‐mediated reduction of JAG1 expression inhibited OB differentiation. Moreover, a number of known cell cycle regulator and cell proliferation proteins, such as cyclin D1, cyclin‐dependent kinase 4 and 6 (CDK4 and CDK6), E2F transcription factor three, and cell division cycle 25 homolog A were among miR‐34a targets. Furthermore, in a preclinical model of in vivo bone formation, overexpression of miR‐34a in hMSC reduced heterotopic bone formation by 60%, and conversely, in vivo bone formation was increased by 200% in miR‐34a‐deficient hMSC. miRNA‐34a exhibited unique dual regulatory effects controlling both hMSC proliferation and OB differentiation. Tissue‐specific inhibition of miR‐34a might be a potential novel therapeutic strategy for enhancing in vivo bone formation. Stem Cells 2014;32:902–912 |
doi_str_mv | 10.1002/stem.1615 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1524426475</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3248000551</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4875-2348623f04fedda34122416e3ac729768b463e399baf872529aad4c300f8dd9d3</originalsourceid><addsrcrecordid>eNqN0c9KHTEUBvAgLVVvu_AFJNBNXcz15O8kS3urVdAK1bodMjMJRmYmmsxU3PkIPqNP0txedSEIrk4gPz6S8yG0RWBOAOhuGm0_J5KINbRBBNcF10R9yGeQshCg9TraTOkKgHCh1Ce0TjmDUjK9gfyJb2L4_Wvv8f6BcYOPhktf-zHh0xwa6s6kEf_wztloh9Gb0YcBm6HNDl_4vwF_D4PFByH2q6vg8OHUmwGfjTH0psvT9nhhuy59Rh-d6ZL98jRn6M_B_vnisDg-_Xm02DsuGq5KUVDGlaTMAXe2bQ3jhFJOpGWmKakupaq5ZJZpXRunSiqoNqblDQNwqm11y2bo2yr3Ooabyaax6n1q8gvMYMOUKiIo51TyUryDgpIKBLBMv76iV2GKQ_7IUpUKJAiV1c5K5Z2mFK2rrqPvTbyrCFTLqqplVdWyqmy3nxKnurfti3zuJoPdFbj1nb17O6k6O98_-R_5D8GknLY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1507806058</pqid></control><display><type>article</type><title>MicroRNA‐34a Inhibits Osteoblast Differentiation and In Vivo Bone Formation of Human Stromal Stem Cells</title><source>MEDLINE</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Chen, Li ; HolmstrØm, Kim ; Qiu, Weimin ; Ditzel, Nicholas ; Shi, Kaikai ; Hokland, Lea ; Kassem, Moustapha</creator><creatorcontrib>Chen, Li ; HolmstrØm, Kim ; Qiu, Weimin ; Ditzel, Nicholas ; Shi, Kaikai ; Hokland, Lea ; Kassem, Moustapha</creatorcontrib><description>Osteoblast differentiation and bone formation (osteogenesis) are regulated by transcriptional and post‐transcriptional mechanisms. Recently, microRNAs (miRNAs) were identified as novel key regulators of human stromal (skeletal, mesenchymal) stem cells (hMSC) differentiation. Here, we identified miRNA‐34a (miR‐34a) and its target protein networks as modulator of osteoblastic (OB) differentiation of hMSC. miRNA array profiling and further validation by quantitative RT‐PCR revealed that miR‐34a was upregulated during OB differentiation of hMSC, and in situ hybridization confirmed its OB expression in vivo. Overexpression of miR‐34a inhibited early commitment and late OB differentiation of hMSC in vitro, whereas inhibition of miR‐34a by anti‐miR‐34a enhanced these processes. Target prediction analysis and experimental validation confirmed Jagged1 (JAG1), a ligand for Notch 1, as a bona fide target of miR‐34a. siRNA‐mediated reduction of JAG1 expression inhibited OB differentiation. Moreover, a number of known cell cycle regulator and cell proliferation proteins, such as cyclin D1, cyclin‐dependent kinase 4 and 6 (CDK4 and CDK6), E2F transcription factor three, and cell division cycle 25 homolog A were among miR‐34a targets. Furthermore, in a preclinical model of in vivo bone formation, overexpression of miR‐34a in hMSC reduced heterotopic bone formation by 60%, and conversely, in vivo bone formation was increased by 200% in miR‐34a‐deficient hMSC. miRNA‐34a exhibited unique dual regulatory effects controlling both hMSC proliferation and OB differentiation. Tissue‐specific inhibition of miR‐34a might be a potential novel therapeutic strategy for enhancing in vivo bone formation. Stem Cells 2014;32:902–912</description><identifier>ISSN: 1066-5099</identifier><identifier>EISSN: 1549-4918</identifier><identifier>DOI: 10.1002/stem.1615</identifier><identifier>PMID: 24307639</identifier><language>eng</language><publisher>United States: Oxford University Press</publisher><subject>Calcium-Binding Proteins - genetics ; Calcium-Binding Proteins - metabolism ; Cell cycle ; Cell Cycle Proteins - genetics ; Cell Cycle Proteins - metabolism ; Cell Differentiation - physiology ; Cell division ; Cell Proliferation - physiology ; DifferentiationBone formation ; Human stromal stem cells ; Humans ; Intercellular Signaling Peptides and Proteins - genetics ; Intercellular Signaling Peptides and Proteins - metabolism ; Jagged-1 Protein ; Kinases ; Membrane Proteins - genetics ; Membrane Proteins - metabolism ; Mesenchymal Stromal Cells - cytology ; Mesenchymal Stromal Cells - metabolism ; MicroRNA 34a ; MicroRNAs - genetics ; MicroRNAs - metabolism ; Osteoblast ; Osteoblasts - cytology ; Osteoblasts - metabolism ; Osteogenesis - physiology ; Receptor, Notch1 - genetics ; Receptor, Notch1 - metabolism ; Serrate-Jagged Proteins ; Stem cells</subject><ispartof>Stem cells (Dayton, Ohio), 2014-04, Vol.32 (4), p.902-912</ispartof><rights>AlphaMed Press</rights><rights>AlphaMed Press.</rights><rights>2013 AlphaMed Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4875-2348623f04fedda34122416e3ac729768b463e399baf872529aad4c300f8dd9d3</citedby><cites>FETCH-LOGICAL-c4875-2348623f04fedda34122416e3ac729768b463e399baf872529aad4c300f8dd9d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24307639$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Li</creatorcontrib><creatorcontrib>HolmstrØm, Kim</creatorcontrib><creatorcontrib>Qiu, Weimin</creatorcontrib><creatorcontrib>Ditzel, Nicholas</creatorcontrib><creatorcontrib>Shi, Kaikai</creatorcontrib><creatorcontrib>Hokland, Lea</creatorcontrib><creatorcontrib>Kassem, Moustapha</creatorcontrib><title>MicroRNA‐34a Inhibits Osteoblast Differentiation and In Vivo Bone Formation of Human Stromal Stem Cells</title><title>Stem cells (Dayton, Ohio)</title><addtitle>Stem Cells</addtitle><description>Osteoblast differentiation and bone formation (osteogenesis) are regulated by transcriptional and post‐transcriptional mechanisms. Recently, microRNAs (miRNAs) were identified as novel key regulators of human stromal (skeletal, mesenchymal) stem cells (hMSC) differentiation. Here, we identified miRNA‐34a (miR‐34a) and its target protein networks as modulator of osteoblastic (OB) differentiation of hMSC. miRNA array profiling and further validation by quantitative RT‐PCR revealed that miR‐34a was upregulated during OB differentiation of hMSC, and in situ hybridization confirmed its OB expression in vivo. Overexpression of miR‐34a inhibited early commitment and late OB differentiation of hMSC in vitro, whereas inhibition of miR‐34a by anti‐miR‐34a enhanced these processes. Target prediction analysis and experimental validation confirmed Jagged1 (JAG1), a ligand for Notch 1, as a bona fide target of miR‐34a. siRNA‐mediated reduction of JAG1 expression inhibited OB differentiation. Moreover, a number of known cell cycle regulator and cell proliferation proteins, such as cyclin D1, cyclin‐dependent kinase 4 and 6 (CDK4 and CDK6), E2F transcription factor three, and cell division cycle 25 homolog A were among miR‐34a targets. Furthermore, in a preclinical model of in vivo bone formation, overexpression of miR‐34a in hMSC reduced heterotopic bone formation by 60%, and conversely, in vivo bone formation was increased by 200% in miR‐34a‐deficient hMSC. miRNA‐34a exhibited unique dual regulatory effects controlling both hMSC proliferation and OB differentiation. Tissue‐specific inhibition of miR‐34a might be a potential novel therapeutic strategy for enhancing in vivo bone formation. Stem Cells 2014;32:902–912</description><subject>Calcium-Binding Proteins - genetics</subject><subject>Calcium-Binding Proteins - metabolism</subject><subject>Cell cycle</subject><subject>Cell Cycle Proteins - genetics</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>Cell Differentiation - physiology</subject><subject>Cell division</subject><subject>Cell Proliferation - physiology</subject><subject>DifferentiationBone formation</subject><subject>Human stromal stem cells</subject><subject>Humans</subject><subject>Intercellular Signaling Peptides and Proteins - genetics</subject><subject>Intercellular Signaling Peptides and Proteins - metabolism</subject><subject>Jagged-1 Protein</subject><subject>Kinases</subject><subject>Membrane Proteins - genetics</subject><subject>Membrane Proteins - metabolism</subject><subject>Mesenchymal Stromal Cells - cytology</subject><subject>Mesenchymal Stromal Cells - metabolism</subject><subject>MicroRNA 34a</subject><subject>MicroRNAs - genetics</subject><subject>MicroRNAs - metabolism</subject><subject>Osteoblast</subject><subject>Osteoblasts - cytology</subject><subject>Osteoblasts - metabolism</subject><subject>Osteogenesis - physiology</subject><subject>Receptor, Notch1 - genetics</subject><subject>Receptor, Notch1 - metabolism</subject><subject>Serrate-Jagged Proteins</subject><subject>Stem cells</subject><issn>1066-5099</issn><issn>1549-4918</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0c9KHTEUBvAgLVVvu_AFJNBNXcz15O8kS3urVdAK1bodMjMJRmYmmsxU3PkIPqNP0txedSEIrk4gPz6S8yG0RWBOAOhuGm0_J5KINbRBBNcF10R9yGeQshCg9TraTOkKgHCh1Ce0TjmDUjK9gfyJb2L4_Wvv8f6BcYOPhktf-zHh0xwa6s6kEf_wztloh9Gb0YcBm6HNDl_4vwF_D4PFByH2q6vg8OHUmwGfjTH0psvT9nhhuy59Rh-d6ZL98jRn6M_B_vnisDg-_Xm02DsuGq5KUVDGlaTMAXe2bQ3jhFJOpGWmKakupaq5ZJZpXRunSiqoNqblDQNwqm11y2bo2yr3Ooabyaax6n1q8gvMYMOUKiIo51TyUryDgpIKBLBMv76iV2GKQ_7IUpUKJAiV1c5K5Z2mFK2rrqPvTbyrCFTLqqplVdWyqmy3nxKnurfti3zuJoPdFbj1nb17O6k6O98_-R_5D8GknLY</recordid><startdate>201404</startdate><enddate>201404</enddate><creator>Chen, Li</creator><creator>HolmstrØm, Kim</creator><creator>Qiu, Weimin</creator><creator>Ditzel, Nicholas</creator><creator>Shi, Kaikai</creator><creator>Hokland, Lea</creator><creator>Kassem, Moustapha</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>201404</creationdate><title>MicroRNA‐34a Inhibits Osteoblast Differentiation and In Vivo Bone Formation of Human Stromal Stem Cells</title><author>Chen, Li ; HolmstrØm, Kim ; Qiu, Weimin ; Ditzel, Nicholas ; Shi, Kaikai ; Hokland, Lea ; Kassem, Moustapha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4875-2348623f04fedda34122416e3ac729768b463e399baf872529aad4c300f8dd9d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Calcium-Binding Proteins - genetics</topic><topic>Calcium-Binding Proteins - metabolism</topic><topic>Cell cycle</topic><topic>Cell Cycle Proteins - genetics</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>Cell Differentiation - physiology</topic><topic>Cell division</topic><topic>Cell Proliferation - physiology</topic><topic>DifferentiationBone formation</topic><topic>Human stromal stem cells</topic><topic>Humans</topic><topic>Intercellular Signaling Peptides and Proteins - genetics</topic><topic>Intercellular Signaling Peptides and Proteins - metabolism</topic><topic>Jagged-1 Protein</topic><topic>Kinases</topic><topic>Membrane Proteins - genetics</topic><topic>Membrane Proteins - metabolism</topic><topic>Mesenchymal Stromal Cells - cytology</topic><topic>Mesenchymal Stromal Cells - metabolism</topic><topic>MicroRNA 34a</topic><topic>MicroRNAs - genetics</topic><topic>MicroRNAs - metabolism</topic><topic>Osteoblast</topic><topic>Osteoblasts - cytology</topic><topic>Osteoblasts - metabolism</topic><topic>Osteogenesis - physiology</topic><topic>Receptor, Notch1 - genetics</topic><topic>Receptor, Notch1 - metabolism</topic><topic>Serrate-Jagged Proteins</topic><topic>Stem cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Li</creatorcontrib><creatorcontrib>HolmstrØm, Kim</creatorcontrib><creatorcontrib>Qiu, Weimin</creatorcontrib><creatorcontrib>Ditzel, Nicholas</creatorcontrib><creatorcontrib>Shi, Kaikai</creatorcontrib><creatorcontrib>Hokland, Lea</creatorcontrib><creatorcontrib>Kassem, Moustapha</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Stem cells (Dayton, Ohio)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Li</au><au>HolmstrØm, Kim</au><au>Qiu, Weimin</au><au>Ditzel, Nicholas</au><au>Shi, Kaikai</au><au>Hokland, Lea</au><au>Kassem, Moustapha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MicroRNA‐34a Inhibits Osteoblast Differentiation and In Vivo Bone Formation of Human Stromal Stem Cells</atitle><jtitle>Stem cells (Dayton, Ohio)</jtitle><addtitle>Stem Cells</addtitle><date>2014-04</date><risdate>2014</risdate><volume>32</volume><issue>4</issue><spage>902</spage><epage>912</epage><pages>902-912</pages><issn>1066-5099</issn><eissn>1549-4918</eissn><abstract>Osteoblast differentiation and bone formation (osteogenesis) are regulated by transcriptional and post‐transcriptional mechanisms. Recently, microRNAs (miRNAs) were identified as novel key regulators of human stromal (skeletal, mesenchymal) stem cells (hMSC) differentiation. Here, we identified miRNA‐34a (miR‐34a) and its target protein networks as modulator of osteoblastic (OB) differentiation of hMSC. miRNA array profiling and further validation by quantitative RT‐PCR revealed that miR‐34a was upregulated during OB differentiation of hMSC, and in situ hybridization confirmed its OB expression in vivo. Overexpression of miR‐34a inhibited early commitment and late OB differentiation of hMSC in vitro, whereas inhibition of miR‐34a by anti‐miR‐34a enhanced these processes. Target prediction analysis and experimental validation confirmed Jagged1 (JAG1), a ligand for Notch 1, as a bona fide target of miR‐34a. siRNA‐mediated reduction of JAG1 expression inhibited OB differentiation. Moreover, a number of known cell cycle regulator and cell proliferation proteins, such as cyclin D1, cyclin‐dependent kinase 4 and 6 (CDK4 and CDK6), E2F transcription factor three, and cell division cycle 25 homolog A were among miR‐34a targets. Furthermore, in a preclinical model of in vivo bone formation, overexpression of miR‐34a in hMSC reduced heterotopic bone formation by 60%, and conversely, in vivo bone formation was increased by 200% in miR‐34a‐deficient hMSC. miRNA‐34a exhibited unique dual regulatory effects controlling both hMSC proliferation and OB differentiation. Tissue‐specific inhibition of miR‐34a might be a potential novel therapeutic strategy for enhancing in vivo bone formation. Stem Cells 2014;32:902–912</abstract><cop>United States</cop><pub>Oxford University Press</pub><pmid>24307639</pmid><doi>10.1002/stem.1615</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1066-5099 |
ispartof | Stem cells (Dayton, Ohio), 2014-04, Vol.32 (4), p.902-912 |
issn | 1066-5099 1549-4918 |
language | eng |
recordid | cdi_proquest_miscellaneous_1524426475 |
source | MEDLINE; Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Calcium-Binding Proteins - genetics Calcium-Binding Proteins - metabolism Cell cycle Cell Cycle Proteins - genetics Cell Cycle Proteins - metabolism Cell Differentiation - physiology Cell division Cell Proliferation - physiology DifferentiationBone formation Human stromal stem cells Humans Intercellular Signaling Peptides and Proteins - genetics Intercellular Signaling Peptides and Proteins - metabolism Jagged-1 Protein Kinases Membrane Proteins - genetics Membrane Proteins - metabolism Mesenchymal Stromal Cells - cytology Mesenchymal Stromal Cells - metabolism MicroRNA 34a MicroRNAs - genetics MicroRNAs - metabolism Osteoblast Osteoblasts - cytology Osteoblasts - metabolism Osteogenesis - physiology Receptor, Notch1 - genetics Receptor, Notch1 - metabolism Serrate-Jagged Proteins Stem cells |
title | MicroRNA‐34a Inhibits Osteoblast Differentiation and In Vivo Bone Formation of Human Stromal Stem Cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T05%3A18%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MicroRNA%E2%80%9034a%20Inhibits%20Osteoblast%20Differentiation%20and%20In%20Vivo%20Bone%20Formation%20of%20Human%20Stromal%20Stem%20Cells&rft.jtitle=Stem%20cells%20(Dayton,%20Ohio)&rft.au=Chen,%20Li&rft.date=2014-04&rft.volume=32&rft.issue=4&rft.spage=902&rft.epage=912&rft.pages=902-912&rft.issn=1066-5099&rft.eissn=1549-4918&rft_id=info:doi/10.1002/stem.1615&rft_dat=%3Cproquest_cross%3E3248000551%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1507806058&rft_id=info:pmid/24307639&rfr_iscdi=true |